Physiological changes, elicited in animal immune tissues by exposure to pathogens, may be studied using functional genomics approaches. We created and characterized reciprocal suppression subtractive hybridization (SSH) cDNA libraries to identify differentially expressed genes in spleen and head kidney tissues of Atlantic cod ( Gadus morhua) challenged with intraperitoneal injections of formalin-killed, atypical Aeromonas salmonicida. Of 4,154 ESTs from four cDNA libraries, 10 genes with immune-relevant functional annotations were selected for QPCR studies using individual fish templates to assess biological variability. Genes confirmed by QPCR as upregulated by A. salmonicida included interleukin-1β, interleukin-8, a small inducible cytokine, interferon regulatory factor 1 (IRF1), ferritin heavy subunit, cathelicidin, and hepcidin. This study is the first large-scale discovery of bacteria-responsive genes in cod and the first to demonstrate upregulation of IRF1 in fish immune tissues as a result of bacterial antigen stimulation. Given the importance of IRF1 in vertebrate immune responses to viral and bacterial pathogens, the full-length cDNA sequence of Atlantic cod IRF1 was obtained and compared with putative orthologous sequences from other organisms. Functional annotations of assembled SSH library ESTs showed that bacterial antigen stimulation caused changes in many biological processes including chemotaxis, regulation of apoptosis, antimicrobial peptide production, and iron homeostasis. Moreover, differences in spleen and head kidney gene expression responses to the bacterial antigens pointed to a potential role for the cod spleen in blood-borne pathogen clearance. Our data show that Atlantic cod immune tissue responses to bacterial antigens are similar to those seen in other fish species and higher vertebrates.
The objectives of this study are to examine hepatic gene expression changes caused by GH transgenesis and enhanced growth. This is the first use of cDNA microarrays to study the influence of GH transgenesis on liver gene expression in a nonmammalian vertebrate, and the first such study using sexually immature animals. Three groups of coho salmon were examined: GH transgenic on full ration (T), GH transgenic on restricted ration (R), and control non-transgenic (C). Specific growth rates for weight in T were approximately eightfold higher than in C, and fourfold higher than in R. Differential gene expression in T, R, and C samples was determined using w3500 and 16 000 gene microarrays, and R and C samples were compared on a different w4000 gene microarray. The use of multiple microarray platforms increased the overall proportion of the hepatic transcriptome considered in these studies. Cross-platform comparisons identified genes behaving similarly between studies. For example, genes encoding a precerebellin-like protein and complement component C3 were downregulated in R relative to C (R!C) in two microarray studies, and hemoglobins a and b were ROC in all three studies. Comparisons of informative gene lists within and between studies inferred causes of altered gene expression. For example, ten genes, including 78 kDa glucose-regulated protein, glycerol-3-phosphate dehydrogenase, hemoglobins a and b, and a C-type lectin, were likely induced by GH transgenesis due to their presence in both TOC and ROC gene lists. Eleven genes, including hepcidin, nuclear protein p8, precerebellin-like, transketolase, and fatty acid-binding protein, were present in both T!C and R!C gene lists and were, therefore, likely suppressed by GH transgenesis. A large number of salmonid genes identified in these studies are involved in iron homeostasis, mitochondrial function, carbohydrate metabolism, cellular proliferation, and innate immunity. Pentose phosphate pathway genes phosphogluconate dehydrogenase, transaldolase, and transketolase, were dysregulated in GH transgenic samples relative to control samples. Changes in the expression of genes involved in maintaining hemoglobin levels (heme oxygenase, hemoglobins a and b, Kruppel-like globin gene activator, hepcidin) in R and T fish indicate a need for additional hemoglobin in the transgenic fish, perhaps due to higher metabolic rate required for enhanced growth.
The collapse of Atlantic cod (Gadus morhua) wild populations strongly impacted the Atlantic cod fishery and led to the development of cod aquaculture. In order to improve aquaculture and broodstock quality, we need to gain knowledge of genes and pathways involved in Atlantic cod responses to pathogens and other stressors. The Atlantic Cod Genomics and Broodstock Development Project has generated over 150,000 expressed sequence tags from 42 cDNA libraries representing various tissues, developmental stages, and stimuli. We used this resource to develop an Atlantic cod oligonucleotide microarray containing 20,000 unique probes. Selection of sequences from the full range of cDNA libraries enables application of the microarray for a broad spectrum of Atlantic cod functional genomics studies. We included sequences that were highly abundant in suppression subtractive hybridization (SSH) libraries, which were enriched for transcripts responsive to pathogens or other stressors. These sequences represent genes that potentially play an important role in stress and/or immune responses, making the microarray particularly useful for studies of Atlantic cod gene expression responses to immune stimuli and other stressors. To demonstrate its value, we used the microarray to analyze the Atlantic cod spleen response to stimulation with formalin-killed, atypical Aeromonas salmonicida, resulting in a gene expression profile that indicates a strong innate immune response. These results were further validated by quantitative PCR analysis and comparison to results from previous analysis of an SSH library. This study shows that the Atlantic cod 20K oligonucleotide microarray is a valuable new tool for Atlantic cod functional genomics research.Electronic supplementary materialThe online version of this article (doi:10.1007/s10126-010-9335-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.