The nasal cavity is essential for humidifying and warming the air before it reaches the sensitive lungs. Because humans inhabit environments that can be seen as extreme from the perspective of respiratory function, nasal cavity shape is expected to show climatic adaptation. This study examines the relationship between modern human variation in the morphology of the nasal cavity and the climatic factors of temperature and vapor pressure, and tests the hypothesis that within increasingly demanding environments (colder and drier), nasal cavities will show features that enhance turbulence and air-wall contact to improve conditioning of the air. We use three-dimensional geometric morphometrics methods and multivariate statistics to model and analyze the shape of the bony nasal cavity of 10 modern human population samples from five climatic groups. We report significant correlations between nasal cavity shape and climatic variables of both temperature and humidity. Variation in nasal cavity shape is correlated with a cline from cold-dry climates to hot-humid climates, with a separate temperature and vapor pressure effect. The bony nasal cavity appears mostly associated with temperature, and the nasopharynx with humidity. The observed climate-related shape changes are functionally consistent with an increase in contact between air and mucosal tissue in cold-dry climates through greater turbulence during inspiration and a higher surface-to-volume ratio in the upper nasal cavity.
Many studies have described shape variation of the modern human cranium in relation to subsistence; however, patterns of covariation within the masticatory apparatus (MA) remain largely unexplored. The patterns and intensity of shape covariation, and how this is related to diet, are essential for understanding the evolution of functional masticatory adaptations of the human cranium. Within a worldwide sample (n 5 255) of 15 populations with different modes of subsistence, we use partial least squares analysis to study the relationships between three components of the MA: upper dental arch, masseter muscle, and temporalis muscle attachments. We show that the shape of the masseter muscle and the shape of the temporalis muscle clearly covary with one another, but that the shape of the dental arch seems to be rather independent of the masticatory muscles. On the contrary, when relative positioning, orientation, and size of the masticatory components is included in the analysis, the dental arch shows the highest covariation with the other cranial parts, indicating that these additional factors are more important than just shape with regard to covariation within the MA. Covariation patterns among these cranial regions differ mainly between hunting-fishing and gathering-agriculture groups, possibly relating to greater masticatory strains resulting from a large meat component in the diet. Highstrain groups show stronger covariation between upper dental arch and masticatory muscle shape when compared with low-strain groups. These results help to provide a clearer understanding of constraints and interlinkage of shape variation within the human MA and allow for more realistic modeling and predictions in future biomechanical studies. Anat Rec, 298:64-84, 2015. V C 2014 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.