Alzheimer's Disease is the most common neurodegenerative disorder. A hallmark of this disease is aggregation of the protein Tau into fibrillar tangles, which is ultimately linked to neuronal death 1, 2 . Oligomeric precursors of Tau fibrils are suspected to be the neurotoxic agent while fibrils themselves may be less harmful end products of the aggregation process 3, 4 . Evolutionary conserved families of molecular chaperones maintain protein homeostasis in healthy cells, preventing aggregation 5, 6 . Here, we investigate whether such chaperones could possibly reverse the aggregation reaction and dissolve Tau fibrils. Indeed we find that the human Hsp70 chaperone system disaggregates Tau fibrils. Both the bacterial and human Hsp70 chaperone systems disassemble fibril superstructures assembled of several fibril strands into single fibrils, indicating that this is an evolutionary conserved capacity of the Hsp70 system. However, further disaggregation of Tau fibrils into oligomers and even monomers is reserved to the human homologue. Thus, although bacteria possess an effective machinery to dissolve amorphous aggregates 7-9 , we see that they do not have the means to disaggregate fibrils. Fibrillar aggregates, therefore, require different chaperone systems than amorphous aggregates, and this is a property acquired by Hsp70 during evolution. This makes the Hsp70 system an interesting target for novel drug strategies in Alzheimer.
Small tandem DNA duplications in the range of 15 to 300 base‐pairs play an important role in the aetiology of human disease and contribute to genome diversity. Here, we discuss different proposed mechanisms for their occurrence and argue that this type of structural variation mainly results from mutagenic repair of chromosomal breaks. This hypothesis is supported by both bioinformatical analysis of insertions occurring in the genome of different species and disease alleles, as well as by CRISPR/Cas9‐based experimental data from different model systems. Recent work points to fill‐in synthesis at double‐stranded DNA breaks with complementary sequences, regulated by end‐joining mechanisms, to account for small tandem duplications. We will review the prevalence of small tandem duplications in the population, and we will speculate on the potential sources of DNA damage that could give rise to this mutational signature. With the development of novel algorithms to analyse sequencing data, small tandem duplications are now more frequently detected in the human genome and identified as oncogenic gain‐of‐function mutations. Understanding their origin could lead to optimized treatment regimens to prevent therapy‐induced activation of oncogenes and might expose novel vulnerabilities in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.