The results show that MEGS capacity has a greater sensitivity than respiratory chain enzymatic activities for detection of subtle mitochondrial dysfunction. This is important in the workup of patients with rare or new mitochondrial DNA mutations, and with low mutation loads. In these cases we suggest to determine the MEGS capacity.
A 13-year-old girl with non-familial exercise intolerance, muscle pain and lactic acidaemia underwent a muscle biopsy for suspected mitochondrial disease. Muscle morphology showed 25% ragged-red fibres and 80% COX-negative staining. Enzymatic activities of mitochondrially co-encoded respiratory chain enzymes (complexes I, III, and IV) were decreased in muscle but normal in cultured skin fibroblasts. mtDNA analysis revealed the presence of the 7497G>A mutation in the tRNASer(UCN) gene, homoplasmic in skeletal muscle and 90% in leukocytes. Analysis of the mother's mtDNA showed 10% heteroplasmy in blood. It may be concluded that the 7497G>A mutation is associated with a muscle-only disease presentation for which high levels of mutated mtDNA are required. Exercise intolerance and muscle pain in otherwise normal children warrants further mitochondrial evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.