In many neurodegenerative disorders, aggregates of ubiquitinated proteins are detected in neuronal inclusions, but their role in neurodegeneration remains to be defined. To identify intracellular mechanisms associated with the appearance of ubiquitin-protein aggregates, mouse neuronal HT4 cells were treated with cadmium. This heavy metal is a potent cell poison that mediates oxidative stress and disrupts the ubiquitin/ proteasome pathway. In the current studies, the following intracellular events were found to be also induced by cadmium: (i) a specific rise in cyclooxygenase-2 (COX-2) gene expression but not COX-1; (ii) an increase in the extracellular levels of the proinflammatory prostaglandin E2, a product of COX-2; and (iii) production of 4-hydroxy-2-nonenal-protein adducts, which result from lipid peroxidation. In addition, cadmium treatment led to the accumulation of high molecular weight ubiquitin-COX-2 conjugates and perturbed COX-2 glycosylation. The thiol-reducing antioxidant N-acetylcysteine, and, to a lesser extent, the COX-2 inhibitor celecoxib, attenuated the loss of cell viability induced by cadmium demonstrating that oxidative stress and COX-2 activation contribute to cadmium cytotoxicity. These findings establish that disruption of the ubiquitin/proteasome pathway is not the only event triggered by cadmium. This oxidative stressor also activates COX-2 function. Both events could be triggered by formation of 4-hydroxy-2-nonenal as a result of cadmium-induced lipid peroxidation. Proinflammatory responses stimulated by oxidative stressors that mimic the cadmium effects may, therefore, be important initiators of the neurodegenerative process and exacerbate its progress.
The role of the proinflammatory and inducible form of cyclooxygenases (COX-2) in neurodegeneration is not well defined. Some of its metabolic products, such as prostaglandins (PG) of the J2 series, are known to be neurotoxic. Here we demonstrate that PGJ2 enhances COX-2 gene expression without elevating COX-1 levels in neuronal cells. PGJ2 also increased PGE2 production, establishing that the de novo synthesized COX-2 is enzymatically active. PGJ2 derivatives, such as 15d-PGJ2, are known activators of PPARgamma, a nuclear receptor that activates gene expression. However, the selective PPARgamma agonist ciglitazone failed to up-regulate COX-2, indicating that the PGJ2 effect on COX-2 is PPARgamma independent. Furthermore, PGJ2 stabilized IkappaBalpha levels, indicating that NFkappaB is not active under these conditions. The blocking of neuronal NFkappaB activity by PGJ2 may be an important contributor to its neurotoxicity, insofar as NFkappaB transactivation seems to be required for neuronal survival in the CNS. Interleukin-1 (IL1) is a proinflammatory cytokine known to stimulate the expression of genes associated with inflammation, including COX-2. Notably, IL1 mRNA levels in the neuronal cells were increased by PGJ2 treatment. The proinflammatory cytokine may mediate COX-2 up-regulation by PGJ2 through p38MAPK and not JNK activation, in that only an inhibitor of the former prevented the COX-2 increase. Thiol-reducing agents, such as N-acetylcysteine, protected the neuronal cells from the deleterious effects of PGJ2, whereas ascorbic acid did not. Collectively, our findings suggest that proinflammatory conditions that lead to COX-2 up-regulation and the concomitant production of PGJ2 initiate a mechanism of self-destruction through an autotoxic loop between PGJ2 and COX-2 that may exacerbate neurodegeneration beyond a point of no return. Thiol-reducing antioxidants may offer an optimal strategy for halting this neurodegenerative process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.