This paper describes a dataset of residential electricity household and heat pump load profiles, measured in 38 single-family houses in Northern Germany. We provide data per household of apparent, active and reactive power (W), voltage (V), current (A) and the power factor (no unit) in 10 seconds to 60 minutes temporal resolution from May 2018 to the end of 2020. We validated the dataset both in itself, comparing different measurements that should produce the same results, and externally to standard load profiles and found no major inconsistencies. We identified an average consumption per single-family house with 2.38 inhabitants of 2829 kWh for the household and an additional 4993 kWh for the heat pump. The dataset can support the understanding of patterns in electrical load curves and can help to estimate the additional load on distribution networks induced by heat pumps.
End-use specific residential electricity load profiles are of interest for energy system modelling that requires future load curves or demand-side management. We present a model that is applicable across countries to predict consumption on a regional and national scale, using openly available data. The model uses neural networks (NNs) to correlate measured consumption from one country (United Kingdom) with weather data and daily profiles of a mix of human activity and device specific power profiles. We then use region-specific weather data and time-use surveys as input for the trained NNs to predict unscaled electric load profiles. The total power profile consists of the end-use household load profiles scaled with real consumption. We compare the model’s results with measured and independently simulated profiles of various European countries. The NNs achieve a mean absolute error compared with the average load of 6.5 to 33% for the test set. For Germany, the standard deviation between the simulation, the standard load profile H0, and measurements from the University of Applied Sciences Berlin is 26.5%. Our approach reduces the amount of input data required compared with existing models for modelling region-specific electricity load profiles considering end-uses and seasonality based on weather parameters. Hourly load profiles for 29 European countries based on four historical weather years are distributed under an open license.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.