BackgroundProechimys is the most diverse genus in family Echimyidae, comprising 25 species (two of which are polytypic) and 39 taxa. Despite the numerous forms of this rodent and their abundance in nature, there are many taxonomic problems due to phenotypic similarities within the genus and high intraspecific variation. Extensive karyotypic variation has been noted, however, with diploid numbers (2n) ranging from 14 to 62 chromosomes. Some heteromorphism can be found, and 57 different karyotypes have been described to date.ResultsIn the present work, we describe a cytotype with a very low 2n. Specimens of Proechimys cf. longicaudatus were collected from two different places in northern Mato Grosso state, Brazil (12°54″S, 52°22″W and 9°51′17″S, 58°14′53″W). The females and males had 16 and 17 chromosomes, respectively; all chromosomes were acrocentric, with the exception of the X chromosome, which was bi-armed. The sex chromosome system was found to be XY1Y2, originating from a Robertsonian rearrangement involving the X and a large acrocentric autosome. Females had two Neo-X chromosomes, and males had one Neo-X and two Y chromosomes. NOR staining was found in the interstitial region of one autosomal pair.ConclusionsComparison of this karyotype with those described in the literature revealed that Proechimys with similar karyotypes had previously been collected from nearby localities. We therefore suggest that this Proechimys belongs to a different taxon, and is either a new species or one that requires reassessment.
Background The Neacomys genus is predominantly found in the Amazon region, and belongs to the most diverse tribe of the Sigmodontinae subfamily (Rodentia, Cricetidae, Oryzomyini). The systematics of this genus and questions about its diversity and range have been investigated by morphological, molecular (Cytb and COI sequences) and karyotype analysis (classic cytogenetics and chromosome painting), which have revealed candidate species and new distribution areas. Here we analyzed four species of Neacomys by chromosome painting with Hylaeamys megacephalus (HME) whole-chromosome probes, and compared the results with two previously studied Neacomys species and with other taxa from Oryzomyini and Akodontini tribes that have been hybridized with HME probes. Maximum Parsimony (MP) analyses were performed with the PAUP and T.N.T. software packages, using a non-additive (unordered) multi-state character matrix, based on chromosomal morphology, number and syntenic blocks. We also compared the chromosomal phylogeny obtained in this study with molecular topologies (Cytb and COI) that included eastern Amazonian species of Neacomys, to define the phylogenetic relationships of these taxa. Results The comparative chromosome painting analysis of the seven karyotypes of the six species of Neacomys shows that their diversity is due to 17 fusion/fission events and one translocation, pericentric inversions in four syntenic blocks, and constitutive heterochromatin (CH) amplification/deletion of six syntenic autosomal blocks plus the X chromosome. The chromosomal phylogeny is consistent with the molecular relationships of species of Neacomys. We describe new karyotypes and expand the distribution area for species from eastern Amazonia and detect complex rearrangements by chromosome painting among the karyotypes. Conclusions Our phylogeny reflects the molecular relationships of the Akodontini and Oryzomyini taxa and supports the monophyly of Neacomys. This work presents new insights about the chromosomal evolution of this group, and we conclude that the karyotypic divergence is in accord with phylogenetic relationships.
BackgroundHolocentric chromosomes occur in approximately 750 species of eukaryotes. Among them, the genus Tityus (Scorpiones, Buthidae) has a labile karyotype that shows complex multivalent associations during male meiosis. Thus, taking advantage of the excellent model provided by the Buthidae scorpions, here we analyzed the chromosomal distribution of several repetitive DNA classes on the holocentric chromosomes of different populations of the species Tityus obscurus Gervais, 1843, highlighting their involvement in the karyotypic differences found among them.ResultsThis species shows inter- and intrapopulational karyotype variation, with seven distinct cytotypes: A (2n = 16), B (2n = 14), C (2n = 13), D (2n = 13), E (2n = 12), F (2n = 12) and G (2n = 11). Furthermore, exhibits achiasmatic male meiosis and lacks heteromorphic sex chromosomes. Trivalent and quadrivalent meiotic associations were found in some cytotypes. In them, 45S rDNAs were found in the terminal portions of two pairs, while TTAGG repeats were found only at the end of the chromosomes. In the cytotype A (2n = 16), the U2 snRNA gene mapped to pair 1, while the H3 histone cluster and C 0 t-1 DNA fraction was terminally distributed on all pairs. Mariner transposons were found throughout the chromosomes, with the exception of one individual of cytotype A (2n = 16), in which it was concentrated in heterochromatic regions.ConclusionsChromosomal variability found in T. obscurus are due to rearrangements of the type fusion/fission and reciprocal translocations in heterozygous. These karyotype differences follow a geographical pattern and may be contributing to reproductive isolation between populations analyzed. Our results also demonstrate high mobility of histone H3 genes. In contrast, other multigene families (45S rDNA and U2 snRNA) have conserved distribution among individuals. The accumulation of repetitive sequences in distal regions of T. obscurus chromosomes, suggests that end of chromosome are not covered by the kinetochore.
The taxonomic identification of Lonchothrix emiliae (Rodentia, Echimyidae, Eumysopinae) is problematic because of the overlap of morphological characters with its sister clade represented by species in the genus Mesomys which, like L . emiliae , is distributed throughout the Amazonian biome. Cytogenetic studies reported the karyotype of L . emiliae as 2n = 60/FN = 116, but this karyotype and samples were later designated as M . hispidus . To evaluate the karyotype diversity of Lonchothrix and Mesomys , and to provide data useful as karyological diagnostic characters, in the present study we made a comparative analysis of specimens of L . emiliae and M . stimulax collected from two Brazilian Amazonian localities, using C-banding, G-banding, FISH using rDNA 45S and telomeric probes, and Cytochrome-b (Cytb) sequences. The results indicate that L . emiliae has 2n = 64♀, 65♂/FN = 124 and a multiple sexual system (XX/XY 1 Y 2 ), while M . stimulax has 2n = 60/FN = 116. The Neo-X system found in L . emiliae also occurs in two Proechimys species, but cytogenetic analysis indicated an independent origin for these systems. The rDNA 45S analysis showed interstitial signals at one autosomal pair for each species, while an ITS found in L . emiliae was not coincident with the NOR. The molecular analysis confirmed Lonchothrix and Mesomys are sister genera, and the high level of intraspecific genetic divergence (7.1%) in M . stimulax suggests that it may be a species complex.
Multiple sex chromosome systems have been described for several mammalian orders, with different species from the same genus sharing the same system (e.g., X1X2Y or XY1Y2). This is important because the translocated autosome may be influenced by the evolution of the recipient sex chromosome, and this may be related to speciation. It is often thought that the translocation of an autosome to a sex chromosome may share a common origin among phylogenetically related species. However, the neo-X chromosomes of Proechimys goeldii (2n = 24♀, 25♂/NFa = 42) and Proechimys gr. goeldii (2n = 16♀, 17♂/NFa = 14) have distinct sizes and morphologies that have made it difficult to determine whether they have the same or different origins. This study investigates the origins of the XY1Y2 sex chromosome determination system in P. goeldii (PGO) and P. gr. goeldii (PGG) and elucidates the chromosomal rearrangements in this low-diploid-number group of Proechimys species. Toward this end, we produced whole-chromosome probes for P. roberti (PRO; 2n = 30♂/NFa = 54) and P. goeldii (2n = 25♂/NFa = 42) and used them in comparative chromosomal mapping. Our analysis reveals that multiple translocations and inversions are responsible for the karyotype diversity of these species, with only three whole-chromosomes conserved between PRO and PGO and eight between PGO and PGG. Our data indicate that multiple sex chromosome systems have originated twice in Proechimys. As small populations are prone to the fixation of chromosomal rearrangements, we speculate that biological features of Rodentia contribute to this fixation. We also highlight the potential of these rodents as a model for studying sex chromosome evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.