Bryozoans are suspension feeding colonial animals that remain attached to the substratum or other surfaces. How well a bryozoan can feed in a particular flow regime could help determine the distribution and abundance of that bryozoan. I tested how velocity of flow affects feeding rate in four species of bryozoans in the laboratory and how these species perform in different flow regimes in the field. I found that one species, Membranipora membranacea, had a higher ingestion rate than did the other three species at all velocities of flow tested. Membranipora also had a higher rate of ingestion at intermediate velocities, while velocity did not have as strong an effect on ingestion rate in the other three species. As predicted from the feeding experiments, all four species generally had greater abundance, attained a larger size, grew faster, and survived longer in flow regimes in which feeding is higher. Also as predicted, Membranipora had greater abundance, attained a larger size, grew faster, and survived longer than did the other three species both in slower and faster flow regimes in the field. Understanding how flow affects feeding can help predict the distribution and abundance of bryozoans in the field. Because especially efficient filterers like Membranipora can grow faster and have higher survival under a wide range of conditions of flow, this species may be able to outcompete many other species or take advantage of ephemeral habitats, thereby becoming a potentially effective invasive species as has been seen in the Gulf of Maine.
Most Recent bryozoan species are encrusting sheets, and many of these colonies have densely packed feeding zooids. In this study, I tested whether tight packing of feeding zooids affects food capture. Colonies of a bryozoan with an encrusting sheet form (Membranipora membranacea) were dissected to produce individuals whose feeding zooids were (1) closely packed, (2) more widely spaced, or (3) isolated. For each type, rates of particle ingestion were measured in still water and in a freestream velocity of 2.7 cm s(-1). Ingestion rate increased when zooids were closest together, probably because of reduced refiltration and increased feeding current strength farther from the lophophores. The mean incurrent velocity within 0.02 cm above the center of the lophophore was 0.28 cm s(-1) regardless of zooid spacing; however, when the incurrent velocity was measured more than 0.1 cm from the lophophores, zooids that were close together or spaced one zooid's width apart had significantly faster incurrent velocities than single zooids. Flow visualization suggests that isolated zooids and those spaced far apart refilter more water than zooids that are close together. These results along with the observed trend of increased zooid integration over evolutionary time suggest that the benefits of increasing coordination outweigh the consequences of intrazooid competition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.