BackgroundSystematic Reviews (SRs) of experimental animal studies are not yet common practice, but awareness of the merits of conducting such SRs is steadily increasing. As animal intervention studies differ from randomized clinical trials (RCT) in many aspects, the methodology for SRs of clinical trials needs to be adapted and optimized for animal intervention studies. The Cochrane Collaboration developed a Risk of Bias (RoB) tool to establish consistency and avoid discrepancies in assessing the methodological quality of RCTs. A similar initiative is warranted in the field of animal experimentation.MethodsWe provide an RoB tool for animal intervention studies (SYRCLE’s RoB tool). This tool is based on the Cochrane RoB tool and has been adjusted for aspects of bias that play a specific role in animal intervention studies. To enhance transparency and applicability, we formulated signalling questions to facilitate judgment.ResultsThe resulting RoB tool for animal studies contains 10 entries. These entries are related to selection bias, performance bias, detection bias, attrition bias, reporting bias and other biases. Half these items are in agreement with the items in the Cochrane RoB tool. Most of the variations between the two tools are due to differences in design between RCTs and animal studies. Shortcomings in, or unfamiliarity with, specific aspects of experimental design of animal studies compared to clinical studies also play a role.ConclusionsSYRCLE’s RoB tool is an adapted version of the Cochrane RoB tool. Widespread adoption and implementation of this tool will facilitate and improve critical appraisal of evidence from animal studies. This may subsequently enhance the efficiency of translating animal research into clinical practice and increase awareness of the necessity of improving the methodological quality of animal studies.
IMPORTANCE Systematic reviews and meta-analyses of individual participant data (IPD) aim to collect, check, and reanalyze individual-level data from all studies addressing a particular research question and are therefore considered a gold standard approach to evidence synthesis. They are likely to be used with increasing frequency as current initiatives to share clinical trial data gain momentum and may be particularly important in reviewing controversial therapeutic areas. OBJECTIVE To develop PRISMA-IPD as a stand-alone extension to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Statement, tailored to the specific requirements of reporting systematic reviews and meta-analyses of IPD. Although developed primarily for reviews of randomized trials, many items will apply in other contexts, including reviews of diagnosis and prognosis. DESIGN Development of PRISMA-IPD followed the EQUATOR Network framework guidance and used the existing standard PRISMA Statement as a starting point to draft additional relevant material. A web-based survey informed discussion at an international workshop that included researchers, clinicians, methodologists experienced in conducting systematic reviews and meta-analyses of IPD, and journal editors. The statement was drafted and iterative refinements were made by the project, advisory, and development groups. The PRISMA-IPD Development Group reached agreement on the PRISMA-IPD checklist and flow diagram by consensus. FINDINGS Compared with standard PRISMA, the PRISMA-IPD checklist includes 3 new items that address (1) methods of checking the integrity of the IPD (such as pattern of randomization, data consistency, baseline imbalance, and missing data), (2) reporting any important issues that emerge, and (3) exploring variation (such as whether certain types of individual benefit more from the intervention than others). A further additional item was created by reorganization of standard PRISMA items relating to interpreting results. Wording was modified in 23 items to reflect the IPD approach. CONCLUSIONS AND RELEVANCE PRISMA-IPD provides guidelines for reporting systematic reviews and meta-analyses of IPD.
ObjectivesEvaluating the variation in the strength of the effect across studies is a key feature of meta-analyses. This variability is reflected by measures like τ2 or I2, but their clinical interpretation is not straightforward. A prediction interval is less complicated: it presents the expected range of true effects in similar studies. We aimed to show the advantages of having the prediction interval routinely reported in meta-analyses.DesignWe show how the prediction interval can help understand the uncertainty about whether an intervention works or not. To evaluate the implications of using this interval to interpret the results, we selected the first meta-analysis per intervention review of the Cochrane Database of Systematic Reviews Issues 2009–2013 with a dichotomous (n=2009) or continuous (n=1254) outcome, and generated 95% prediction intervals for them.ResultsIn 72.4% of 479 statistically significant (random-effects p<0.05) meta-analyses in the Cochrane Database 2009–2013 with heterogeneity (I2>0), the 95% prediction interval suggested that the intervention effect could be null or even be in the opposite direction. In 20.3% of those 479 meta-analyses, the prediction interval showed that the effect could be completely opposite to the point estimate of the meta-analysis. We demonstrate also how the prediction interval can be used to calculate the probability that a new trial will show a negative effect and to improve the calculations of the power of a new trial.ConclusionsThe prediction interval reflects the variation in treatment effects over different settings, including what effect is to be expected in future patients, such as the patients that a clinician is interested to treat. Prediction intervals should be routinely reported to allow more informative inferences in meta-analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.