The potency of nucleotide antagonists at P2Y1 receptors was enhanced by replacing the ribose moiety with a constrained carbocyclic ring (Nandanan, et al. J. Med. Chem. 2000, 43, 829-842). We have now synthesized ring-constrained methanocarba analogues (in which a fused cyclopropane moiety constrains the pseudosugar ring) of adenine and uracil nucleotides, the endogenous activators of P2Y receptors. Methanocarba-adenosine 5'-triphosphate (ATP) was fixed in either a Northern (N) or a Southern (S) conformation, as defined in the pseudorotational cycle. (N)-Methanocarba-uridine was prepared from the 1-amino-pseudosugar ring by treatment with beta-ethoxyacryloyl cyanate and cyclization to form the uracil ring. Phosphorylation was carried out at the 5'-hydroxyl group through a multistep process: Reaction with phosphoramidite followed by oxidation provided the 5'-monophosphates, which then were treated with 1,1'-carbonyldiimidazole for condensation with additional phosphate groups. The ability of the analogues to stimulate phospholipase C through activation of turkey P2Y1 or human P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors stably expressed in astrocytoma cells was measured. At recombinant human P2Y1 and P2Y2 receptors, (N)-methanocarba-ATP was 138- and 41-fold, respectively, more potent than racemic (S)-methanocarba-ATP as an agonist. (N)-methanocarba-ATP activated P2Y11 receptors with a potency similar to ATP. (N)-Methanocarba-uridine 5'-triphosphate (UTP) was equipotent to UTP as an agonist at human P2Y2 receptors and also activated P2Y4 receptors with an EC(50) of 85 nM. (N)-Methanocarba-uridine 5'-diphosphate (UDP) was inactive at the hP2Y6 receptor. The vascular effects of (N)-methanocarba-UTP and (N)-methanocarba-UDP were studied in a model of the rat mesenteric artery. The triphosphate was more potent than UTP in inducing a dilatory P2Y4 response (pEC(50) = 6.1 +/- 0.2), while the diphosphate was inactive as either an agonist or antagonist in a P2Y6 receptor-mediated contractile response. Our results suggest that new nucleotide agonists may be designed on the basis of the (N) conformation that favors selectivity for P2Y1, P2Y2, P2Y4, and P2Y11 receptors.
The 2'-deoxy (2a) and 2'-ara-fluoro (3a) derivatives of zebularine [1-(beta-D-ribofuranosyl)-dihydropyrimidin-2-one, 1a] were phosphorylated in high yield to the 5'-nucleotides 2b and 3b, respectively, and characterized by HPLC, enzyme degradation, 1H, 13C and 31P NMR, and high resolution mass spectral analysis. Their inhibitory activity against partially purified MOLT-4 deoxycytidylate deaminase (dCMPD) in the presence of the allosteric effector deoxycytidine triphosphate (dCTP) and Mg+2 ion was examined. Compounds 2b and 3b inhibited dCMPD with Ki values of 2.1 x 10(-8) M and 1.2 x 10(-8) M, respectively. The parent nucleotide, zebularine monophosphate 1b was ineffective at concentrations > 100 mumol. The effect of the nucleosides, 1a-3a, as well as tetrahydrouridine (THU) and 2'-deoxy THU (dTHU), on the cellular production of DNA precursors was examined in human MOLT-4 peripheral lymphoblasts. It was shown that 1a, 2a and 3a all elevated intracellular dCTP and TTP levels in whole cells with the most powerful effect elicited by 1a. The 2'-fluoro derivative 3a was chemically phosphorylated much more cleanly and higher yield than 2a, without the formation of diphosphorylated by-products. This compound was found to be infinitely less sensitive to acid-catalyzed degradation than 2a. Since the substitution of fluorine for hydrogen had a slight potentiating effect on the dCMPD inhibitory activity while stabilizing the compound toward acid-catalyzed and enzymatic depyrimidination, compound 3b emerges as a very attractive tool for the pharmacological modulation of pyrimidine deaminase activity.
Among inducers of myeloid differentiation for leukemic cells, tiazofurin is of special interest because its mechanism of action is known; it inhibits inosine monophosphate dehydrogenase and thus decreases the guanine nucleotide pool. Reported here are three aspects of tiazofurin induction of myeloid differentiation in HL60 human acute promyelocytic leukemia cells. First, inductive efficacy was evaluated for analogues ara-tiazofurin, xylo-tiazofurin, and selenazofurin, for dinucleotide anabolites thiazole-4-carboxamide adenine dinucleotide (TAD) and selenazole-4-carboxamide adenine dinucleotide (SAD), and for a phosphodiesterase-resistant TAD analogue, beta-methylene TAD. The results showed that the parent compounds are more effective inducers than the dinucleotide derivatives and that the selenazole analogues are more effective inducers than the thiazole compounds. Second, HL60 cell induction by tiazofurin was shown to be synergistic with that produced by the antiviral agent ribavirin. Finally, tiazofurin was found to induce expression of a phosphatidylinositol-specific phospholipase C- sensitive Fc gamma-receptor III (FcRIII) on HL60 cells, a feature consistent with neutrophilic, but not monocytic, differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.