Estrogen induces the synthesis of vitellogenin mRNA by activating transcription of the vitellogenin genes. Quantitative inhibition of liver protein synthesis by cycloheximide does not prevent activation of vitellogenin gene transcription. The relative transcription rate of the vitellogenin genes in estrogen stimulated liver is similar in control and cycloheximide treated animals (800-1000 ppm). Selective estrogen activation of vitellogenin gene transcription therefore represents a direct effect of estrogen on vitellogenin gene transcription which can occur without any change in the cells' protein complement. Two other cellular responses to estrogen, the induction of nuclear estrogen receptor, and an increased rate of total nuclear RNA synthesis, are blocked by cycloheximide administration. Since the overall rate of vitellogenin mRNA synthesis is a function of both the selective estrogen activation of vitellogenin gene transcription which is not blocked by cycloheximide and the increased rate of total nuclear RNA synthesis which is blocked by cycloheximide, the total rate of vitellogenin mRNA synthesis is markedly reduced following cycloheximide administration.
Administration of estradiol 17 beta [estra-1,3,5(10)-triene-3,17-beta-diol] to male Xenopus laevis induces the massive synthesis by the liver of the egg yolk precursor phospholipoglycoprotein, vitellogenin, and its cognate mRNAs. Restimulation of male X. laevis that have been previously induced to synthesize vitellogenin mRNA but are inactive in vitellogenin mRNA synthesis at the time of restimulation with estrogen results in more rapid accumulation of vitellogenin mRNA and more efficient transcription of the vitellogenin genes than occurs following primary estrogen stimulation. The estrogen receptor system that mediates estrogen action in this organism exhibits several unusual properties. The cytoplasm of unstimulated liver cells contains high levels of a middle-affinity estrogen-specific binding protein and little if any estrogen receptor. The properties of the estrogen binding protein are consistent with a role in protecting estradiol 17 beta against metabolism, as a fraction of cytoplasmic estradiol 17 beta is not subject to rapid metabolism. In addition, similar binding activities are found in all Xenopus tissues surveyed that respond to steroid hormones. The induction of nuclear estrogen receptor is coincident with the onset of vitellogenin mRNA accumulation. However, an increased level of estrogen receptor is not responsible for the elevated rate of vitellogenin gene transcription observed following restimulation with estrogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.