Drug addiction is a chronic relapsing disorder characterized by compulsive drug seeking and use. Environmental conditioning factors are among the major determinants of relapse in abstinent cocaine users. Here we describe a role of the neuropeptide S (NPS) system in regulating relapse. In rats with a history of cocaine selfadministration, presentation of stimuli predictive of drug availability reinstates drug seeking, triggering relapse. Intracerebroventricular (ICV) injection of NPS increased conditioned reinstatement of cocaine seeking, whereas peripheral administration of the NPS receptor antagonist SHA 68 reduced it. Manipulation of the NPS receptor system did not modify cocaine self-administration. We also found that ICV NPS administration activates c-Fos expression in hypocretin-1/orexin-A (Hcrt-1/Ox-A) immunoreactive neurons in the lateral hypothalamus (LH) and in the perifornical area (PeF). Of note, intra-LH and intra-PeF administration of NPS increased conditioned reinstatement of cocaine responding, an effect that was selectively blocked with the Hcrt-1/Ox-A receptor selective antagonist SB334867. Finally, results showed that intra-LH injection of the NPS antagonist [D-Cys(tBu) (5)]NPS blocked cue-induced cocaine seeking, indicating a role for this system in the pathophysiology of drug relapse. I n 2004, Xu and colleagues reported the deorphanization of a novel neuropeptide system named neuropeptide S (NPS). NPS binds to Gs and Gq protein-coupled receptors, previously identified as GPR154 and now referred to as NPSR (1, 2). NPS peptide transcript is expressed predominantly in a small group of neurons located between the locus ceruleus (LC), the Barrington nucleus, and the parabrachial nuclei. NPSR mRNA is expressed throughout the central nervous system with the highest concentration in olfactory structures, the amygdaloid complex, the paraventricular thalamic nucleus, the subiculum, and the lateral (LH), dorsomedial (DMH), and ventromedial hypothalamus (VMH) (1, 2).Activation of NPSR by intracerebroventricular (ICV) injection of NPS stimulates locomotor activity, increases arousal, and suppresses all stages of sleep (1). ICV injection of NPS has also been shown to stimulate hypothalamic-pituitary-adrenal axis (HPA) activity, enhancing plasma adrenocorticotropic hormone (ACTH) and corticosterone levels (3). Our group has recently found that intra-LH injections of NPS facilitate conditioned reinstatement of alcohol seeking (4). In addition, Pañeda and coworkers reported that ICV NPS itself increased relapse-like behavior in mice previously trained to self-administer cocaine. This latter effect was blocked by CRF1R antagonism and was absent in CRF1 receptor KO mice, suggesting a stress-like effect of NPS under the experimental conditions used (5).In the present study, to examine further the significance of the NPS system in the pathophysiology of cocaine craving and relapse, we studied the effect of NPS and of the selective NPSR antagonists SHA 68 (3-oxo-1,1-diphenyl-tetrahydro-oxazolo[3,4-a]pyrazine-7-ca...
The association of ethanol's reinforcing effects with specific environmental stimuli is thought to be a critical factor for relapse risk in alcoholism. This study examined in rats the effects of a newly deorphanized neuropeptide receptor and its cognate ligand, Neuropeptide S (NPS), on ethanol consumption and reinstatement of ethanol-seeking by environmental cues previously associated with ethanol availability. In the self-administration experiments, the stable response rates observed for ethanol reinforcement were not modified by intracerebroventricular (ICV) injection of NPS (1.0 and 2.0 nmol per rat). In the reinstatement experiments, ethanol-associated cues induced robust rates of ethanol seeking, which were highly resistant to extinction over repeated sessions of reinstatement testing. ICV NPS treatment (1.0, 2.0 and 4.0 nmol per rat) resulted in a significant increase of ethanol seeking elicited by ethanol-associated cues. In contrast, NPS did not affect the reinstatement of responding to water-paired stimuli. Site-specific NPS injection (0.1 and 0.5 nmol per rat) into the lateral hypothalamus also reinstated extinguished responding to ethanol. This effect was selectively blocked by pre-treatment with the hypocretin-1/orexin-A antagonist SB-334867 (10 mg/kg, i.p.). At the dose tested, SB-334867 did not modify alcohol reinstatement per se. These results provide the first demonstration that activation of NPS receptors in the LH intensifies relapse to ethanol-seeking elicited by environmental conditioning factors. This effect is selective, and is mediated by activation of LH hypocretin neurones. Based on the present findings, we also predict that antagonism at NPS receptors could represent a novel pharmacological approach to alcohol relapse treatment.
The activation of a neuronal ensemble in the central nucleus of the amygdala (CeA) during alcohol withdrawal has been hypothesized to induce high levels of alcohol drinking in dependent rats. In the present study we describe that the CeA neuronal ensemble that is activated by withdrawal from chronic alcohol exposure contains ~80% corticotropin-releasing factor (CRF) neurons and that the optogenetic inactivation of these CeA CRF+ neurons prevents recruitment of the neuronal ensemble, decreases the escalation of alcohol drinking, and decreases the intensity of somatic signs of withdrawal. Optogenetic dissection of the downstream neuronal pathways demonstrates that the reversal of addiction-like behaviors is observed after the inhibition of CeA CRF projections to the bed nucleus of the stria terminalis (BNST) and that inhibition of the CRFCeA-BNST pathway is mediated by inhibition of the CRF-CRF1 system and inhibition of BNST cell firing. These results suggest that the CRFCeA-BNST pathway could be targeted for the treatment of excessive drinking in alcohol use disorder.
PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.