Corticotrophin-releasing factor (CRF) is a 41 amino acid neuropeptide that coordinates adaptive responses to stress. CRF projections from neurons in the central nucleus of the amygdala (CeA) to the brainstem are of particular interest for their role in motivated behavior. To directly examine the anatomy and function of CRF neurons, we generated a BAC transgenic Crh-Cre rat in which bacterial Cre recombinase is expressed from the Crh promoter. Using Cre-dependent reporters, we found that Cre expressing neurons in these rats are immunoreactive for CRF and are clustered in the lateral CeA (CeL) and the oval nucleus of the BNST. We detected major projections from CeA CRF neurons to parabrachial nuclei and the locus coeruleus, dorsal and ventral BNST, and more minor projections to lateral portions of the substantia nigra, ventral tegmental area, and lateral hypothalamus. Optogenetic stimulation of CeA CRF neurons evoked GABA-ergic responses in 11% of non-CRF neurons in the medial CeA (CeM) and 44% of non-CRF neurons in the CeL. Chemogenetic stimulation of CeA CRF neurons induced Fos in a similar proportion of non-CRF CeM neurons but a smaller proportion of non-CRF CeL neurons. The CRF1 receptor antagonist R121919 reduced this Fos induction by two-thirds in these regions. These results indicate that CeL CRF neurons provide both local inhibitory GABA and excitatory CRF signals to other CeA neurons, and demonstrate the value of the Crh-Cre rat as a tool for studying circuit function and physiology of CRF neurons.
Abstinence from alcohol is associated with the recruitment of neurons in the central nucleus of the amygdala (CeA) in nondependent rats that binge drink alcohol and in alcohol-dependent rats. However, whether the recruitment of this neuronal ensemble in the CeA is causally related to excessive alcohol drinking or if it represents a consequence of excessive drinking remains unknown. We tested the hypothesis that the recruitment of a neuronal ensemble in the CeA during abstinence is required for excessive alcohol drinking in nondependent rats that binge drink alcohol and in alcohol-dependent rats. We found that inactivation of the CeA neuronal ensemble during abstinence significantly decreased alcohol drinking in both groups. In nondependent rats, the decrease in alcohol intake was transient and returned to normal the day after the injection. In dependent rats, inactivation of the neuronal ensemble with Daun02 produced a long-term decrease in alcohol drinking. Moreover, we observed a significant reduction of somatic withdrawal signs in dependent animals that were injected with Daun02 in the CeA. These results indicate that the recruitment of a neuronal ensemble in the CeA during abstinence from alcohol is causally related to excessive alcohol drinking in alcohol-dependent rats, whereas a similar neuronal ensemble only partially contributed to alcohol-binge-like drinking in nondependent rats. These results identify a critical neurobiological mechanism that may be required for the transition to alcohol dependence, suggesting that focusing on the neuronal ensemble in the CeA may lead to a better understanding of the etiology of alcohol use disorders and improve medication development.
The activation of a neuronal ensemble in the central nucleus of the amygdala (CeA) during alcohol withdrawal has been hypothesized to induce high levels of alcohol drinking in dependent rats. In the present study we describe that the CeA neuronal ensemble that is activated by withdrawal from chronic alcohol exposure contains ~80% corticotropin-releasing factor (CRF) neurons and that the optogenetic inactivation of these CeA CRF+ neurons prevents recruitment of the neuronal ensemble, decreases the escalation of alcohol drinking, and decreases the intensity of somatic signs of withdrawal. Optogenetic dissection of the downstream neuronal pathways demonstrates that the reversal of addiction-like behaviors is observed after the inhibition of CeA CRF projections to the bed nucleus of the stria terminalis (BNST) and that inhibition of the CRFCeA-BNST pathway is mediated by inhibition of the CRF-CRF1 system and inhibition of BNST cell firing. These results suggest that the CRFCeA-BNST pathway could be targeted for the treatment of excessive drinking in alcohol use disorder.
PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction.
Corticotropin releasing factor (CRF) is the primary mediator of stress responses, and nociceptin/orphanin FQ (N/OFQ) plays an important role in the modulation of these stress responses. Thus, in this multidisciplinary study, we explored the relationship between the N/OFQ and the CRF systems in response to stress. Using in situ hybridization (ISH), we assessed the effect of body restraint stress on the gene expression of CRF and N/OFQ-related genes in various subdivisions of the amygdala, a critical brain structure involved in the modulation of stress response and anxiety-like behaviors. We found a selective upregulation of the NOP and downregulation of the CRF 1 receptor transcripts in the CeA and in the BLA after body restraint. Thus, we performed intracellular electrophysiological recordings of GABA A -mediated IPSPs in the central nucleus of the amygdala (CeA) to explore functional interactions between CRF and N/OFQ systems in this brain region. Acute application of CRF significantly increased IPSPs in the CeA, and this enhancement was blocked by N/OFQ. Importantly, in stress-restraint rats, baseline CeA GABAergic responses were elevated and N/OFQ exerted a larger inhibition of IPSPs compared with unrestraint rats. The NOP antagonist [Nphe1]-nociceptin(1-13)NH2 increased the IPSP amplitudes in restraint rats but not in unrestraint rats, suggesting a functional recruitment of the N/OFQ system after acute stress. Finally, we evaluated the anxiety-like response in rats subjected to restraint stress and nonrestraint rats after N/OFQ microinjection into the CeA. Intra-CeA injections of N/OFQ significantly and selectively reduced anxiety-like behavior in restraint rats in the elevated plus maze. These combined results demonstrate that acute stress increases N/OFQ systems in the CeA and that N/OFQ has antistress properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.