Generalitat de Catalunya. Funding sources had no involvement at any stage of the experiment or manuscript preparation.
Chromosomal inversions are present in a wide range of animals and plants, having an important role in adaptation and speciation. Although empirical evidence of their adaptive value is abundant, the role of different processes underlying evolution of chromosomal polymorphisms is not fully understood. History and selection are likely to shape inversion polymorphism variation to an extent yet largely unknown. Here, we perform a real-time evolution study addressing the role of historical constraints and selection in the evolution of these polymorphisms. We founded laboratory populations of Drosophila subobscura derived from three locations along the European cline and followed the evolutionary dynamics of inversion polymorphisms throughout the first 40 generations. At the beginning, populations were highly differentiated and remained so throughout generations. We report evidence of positive selection for some inversions, variable between foundations. Signs of negative selection were more frequent, in particular for most cold-climate standard inversions across the three foundations. We found that previously observed convergence at the phenotypic level in these populations was not associated with convergence in inversion frequencies. In conclusion, our study shows that selection has shaped the evolutionary dynamics of inversion frequencies, but doing so within the constraints imposed by previous history. Both history and selection are therefore fundamental to predict the evolutionary potential of different populations to respond to global environmental changes.
Experimental evolution is a powerful tool to understand the adaptive potential of populations under environmental change. Here, we study the importance of the historical genetic background in the outcome of evolution at the genome-wide level. Using the natural clinal variation of Drosophila subobscura, we sampled populations from two contrasting latitudes (Adraga, Portugal and Groningen, Netherlands) and introduced them in a new common environment in the laboratory. We characterized the genome-wide temporal changes underlying the evolutionary dynamics of these populations, which had previously shown fast convergence at the phenotypic level, but not at chromosomal inversion frequencies. We found that initially differentiated populations did not converge either at genome-wide level or at candidate SNPs with signs of selection. In contrast, populations from Portugal showed convergence to the control population that derived from the same geographical origin and had been long-established in the laboratory. Candidate SNPs showed a variety of different allele frequency change patterns across generations, indicative of an underlying polygenic basis. We did not detect strong linkage around candidate SNPs, but rather a small but long-ranging effect. In conclusion, we found that history played a major role in genomic variation and evolution, with initially differentiated populations reaching the same adaptive outcome through different genetic routes.
Phenotypic plasticity can be an important tool in helping organisms to cope with changing thermal conditions and it may show an interdependency between life-stages. For instance, exposure to stressful temperatures during development can trigger a positive plastic response in adults. In this study, we analyse the thermal plastic response of laboratory populations of Drosophila subobscura, derived from two contrasting latitudes of the European cline. We measured fecundity characters in the experimental populations after exposure to five thermal treatments, with different combinations of developmental and adult temperatures (14°C, 18°C or 26°C). We ask whether (1) adult performance is enhanced (or reduced) by exposing flies to higher (or lower) temperatures during development only; (2) flies raised at lower temperatures outperform those developed at higher ones, supporting the “colder is better” hypothesis; (3) there is a cumulative effect on adult performance of exposing both juveniles and adults to higher (or lower) temperatures; (4) there is any evidence for historical effects on adult performance. Our main findings show that (1) higher developmental temperatures led to low reproductive performance regardless of adult temperature, while at lower temperatures reduced performance only occurred when cold conditions were persistent across juvenile and adult stage; (2) flies raised at lower temperatures did not always outperform those developed at other temperatures; (3) there was no (negative) cumulative effect of exposing both juveniles and adults to higher temperatures; (4) both latitudinal populations showed similar thermal plasticity patterns. The negative effect of high developmental temperature on reproductive performance, regardless of adult temperature, highlights the developmental stage as a critical and most vulnerable stage to climate change and associated heat waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.