The roles of history, chance and selection have long been debated in evolutionary biology. Though uniform selection is expected to lead to convergent evolution between populations, contrasting histories and chance events might prevent them from attaining the same adaptive state, rendering evolution somewhat unpredictable. The predictability of evolution has been supported by several studies documenting repeatable adaptive radiations and convergence in both nature and laboratory. However, other studies suggest divergence among populations adapting to the same environment. Despite the relevance of this issue, empirical data is lacking for real-time adaptation of sexual populations with deeply divergent histories and ample standing genetic variation across fitness-related traits. Here we analyse the real-time evolutionary dynamics of Drosophila subobscura populations, previously differentiated along the European cline, when colonizing a new common environment. By analysing several life-history, physiological and morphological traits, we show that populations quickly converge to the same adaptive state through different evolutionary paths. In contrast with other studies, all analysed traits fully converged regardless of their association with fitness. Selection was able to erase the signature of history in highly differentiated populations after just a short number of generations, leading to consistent patterns of convergent evolution.
Phenotypic plasticity may allow species to cope with environmental variation. The study of thermal plasticity and its evolution helps understanding how populations respond to variation in temperature. In the context of climate change, it is essential to realize the impact of historical differences in the ability of populations to exhibit a plastic response to thermal variation and how it evolves during colonization of new environments. We have analyzed the real-time evolution of thermal reaction norms of adult and juvenile traits in Drosophila subobscura populations from three locations of Europe in the laboratory. These populations were kept at a constant temperature of 18ºC, and were periodically assayed at three experimental temperatures (13ºC, 18ºC, and 23ºC). We found initial differentiation between populations in thermal plasticity as well as evolutionary convergence in the shape of reaction norms for some adult traits, but not for any of the juvenile traits. Contrary to theoretical expectations, an overall better performance of high latitude populations across temperatures in early generations was observed. Our study shows that the evolution of thermal plasticity is trait specific, and that a new stable environment did not limit the ability of populations to cope with environmental challenges.
Chromosomal inversions are present in a wide range of animals and plants, having an important role in adaptation and speciation. Although empirical evidence of their adaptive value is abundant, the role of different processes underlying evolution of chromosomal polymorphisms is not fully understood. History and selection are likely to shape inversion polymorphism variation to an extent yet largely unknown. Here, we perform a real-time evolution study addressing the role of historical constraints and selection in the evolution of these polymorphisms. We founded laboratory populations of Drosophila subobscura derived from three locations along the European cline and followed the evolutionary dynamics of inversion polymorphisms throughout the first 40 generations. At the beginning, populations were highly differentiated and remained so throughout generations. We report evidence of positive selection for some inversions, variable between foundations. Signs of negative selection were more frequent, in particular for most cold-climate standard inversions across the three foundations. We found that previously observed convergence at the phenotypic level in these populations was not associated with convergence in inversion frequencies. In conclusion, our study shows that selection has shaped the evolutionary dynamics of inversion frequencies, but doing so within the constraints imposed by previous history. Both history and selection are therefore fundamental to predict the evolutionary potential of different populations to respond to global environmental changes.
There is considerable evidence for an adaptive role of inversions, but how their genetic content evolves and affects the subsequent evolution of chromosomal polymorphism remains controversial. Here, we track how life-history traits, chromosomal arrangements and 22 microsatellites, within and outside inversions, change in three replicated populations of Drosophila subobscura for 30 generations of laboratory evolution since founding from the wild. The dynamics of fitness-related traits indicated adaptation to the new environment concomitant with directional evolution of chromosomal polymorphism. Evidence of selective changes in frequency of inversions was obtained for seven of 23 chromosomal arrangements, corroborating a role for inversions in adaptation. The evolution of linkage disequilibrium between some microsatellites and chromosomes suggested that adaptive changes in arrangements involved changes in their genetic content. Several microsatellite alleles increased in frequency more than expected by drift in targeted inversions in all replicate populations. In particular, there were signs of selection in the O3+4 arrangement favouring a combination of alleles in two loci linked to the inversion and changing along with it, although the lack of linkage disequilibrium between these loci precludes epistatic selection. Seven other alleles increased in frequency within inversions more than expected by drift, but were not in linkage disequilibrium with them. Possibly these alleles were hitchhiking along with alleles under selection that were not specific to those inversions. Overall, the selection detected on the genetic content of inversions, despite limited coverage of the genome, suggests that genetic changes within inversions play an important role in adaptation.
Interplay between the complex geography, hydrogeomorphological history, past climatic changes, and anthropogenic pressures is likely responsible for the current diversity and species' distribution of freshwater fishes in the Iberian Peninsula. To further disentangle the evolutionary processes promoting the diversification of endemic Iberian Cyprinids through time and space, we explored the patterns of genetic diversity of the Iberian archedmouth nase, Iberochondrostoma lemmingii (Steindachner, 1866), using molecular markers rendering at different timescales: the mitochondrial gene cytochrome b and seven microsatellite loci. Both markers showed significant differentiation of populations though the relative genetic distances among populations were different between markers. Mitochondrial DNA results indicate the isolation of hydrographic basins as the main driver of population differentiation, with Tejo as the centre of diversification. The results also support connections between Tejo, Guadiana, and Guadalquivir, with levels of divergence suggesting an earlier severance of Guadalquivir, whereas Guadiana and Tejo maintained connections until a more recent past. Establishment of more peripherial populations in small southern basins (Quarteira and Almargem) could have been ruled by founder events. However, the analysis of present-day genetic configuration suggested by microsatellite data implies, for the first time, the involvement of other factors in the evolution of arched-mouth Iberian nase populations. Relative low genetic distances between inter-basin populations (Tejo and Guadiana) and the lack of concordance between differentiation and geography suggest a possible influence of human-mediated translocations in the population genetic patterns of I. lemmingii. High intra-basin differentiation levels were found within Tejo and Guadiana and may be associated with factors intrinsic to the species (e.g. low dispersal capability) or natural and/or artificial barriers to gene flow. The low vagility of the species appears to be an important factor influencing the evolutionary processes shaping the phylogeographical patterns of I. lemmingii, which could be relevant for the conservation of this threatened species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.