Dental enamel is comprised primarily of carbonated apatite, with less than 1% w/w organic matter and 4-5% w/w water. To determine the influence of each component on the microhardness and fracture toughness of rat incisor enamel, we mechanically tested specimens in which water and organic matrix were selectively removed. Tests were performed in mid-sagittal and transverse orientations to assess the effect of the structural organization on enamel micromechanical properties. While removal of organic matrix resulted in up to a 23% increase in microhardness, and as much as a 46% decrease in fracture toughness, water had a significantly lesser effect on these properties. Moreover, removal of organic matrix dramatically weakened the dentino-enamel junction (DEJ). Analysis of our data also showed that the structural organization of enamel affects its micromechanical properties. We anticipate that these findings will help guide the development of bio-inspired nanostructured materials for mineralized tissue repair and regeneration.
Objectives Compressive stress has been intentionally introduced into the overlay porcelain of zirconia-ceramic prostheses to prevent veneer fracture. However, recent theoretical analysis has predicted that the residual stresses in the porcelain may be also tensile in nature. This study aims to determine the type and magnitude of the residual stresses in the porcelain veneers of full-contour fixed-dental prostheses (FDPs) with an anatomic zirconia coping design and in control porcelain with the zirconia removed using a well-established Vickers indentation method. Methods Six 3-unit zirconia FDPs were manufactured (NobelBiocare, Gothenburg, Sweden). Porcelain was hand-veneered using a slow cooling rate. Each FDP was sectioned parallel to the occlusal plane for Vickers indentations (n = 143; load = 9.8 N; dwell time = 5 s). Tests were performed in the veneer of porcelain-zirconia specimens (bilayers, n = 4) and porcelain specimens without zirconia cores (monolayers, n = 2). Results The average crack lengths and standard deviation, in the transverse and radial directions (i.e. parallel and perpendicular to the veneer/core interface, respectively), were 67 ± 12 μm and 52 ± 8 μm for the bilayers and 64 ± 8 μm and 64 ± 7 μm for the monolayers. These results indicated a major hoop compressive stress (~40 to 50 MPa) and a moderate radial tensile stress (~10 MPa) in the bulk of the porcelain veneer. Significance Vickers indentation is a powerful method to determine the residual stresses in veneered zirconia systems. Our findings revealed the presence of a radial tensile stress in the overlay porcelain, which may contributed to the large clinical chip fractures observed in these prostheses.
Summary Objectives To compare fatigue failure modes and reliability of hand-veneered and over-pressed implant-supported three-unit zirconium-oxide fixed-dental-prostheses(FDPs). Methods Sixty-four custom-made zirconium-oxide abutments (n=32/group) and thirty-two zirconium-oxide FDP-frameworks were CAD/CAM manufactured. Frameworks were veneered with hand-built up or over-pressed porcelain (n=16/group). Step-stress-accelerated-life-testing (SSALT) was performed in water applying a distributed contact load at the buccal cusp-pontic-area. Post failure examinations were carried out using optical (polarized-reflected-light) and scanning electron microscopy (SEM) to visualize crack propagation and failure modes. Reliability was compared using cumulative-damage step-stress analysis (Alta-7-Pro, Reliasoft). Results Crack propagation was observed in the veneering porcelain during fatigue. The majority of zirconium-oxide FDPs demonstrated porcelain chipping as the dominant failure mode. Nevertheless, fracture of the zirconium-oxide frameworks was also observed. Over-pressed FDPs failed earlier at a mean failure load of 696 ± 149 N relative to hand-veneered at 882 ± 61 N (profile I). Weibull-stress-number of cycles-unreliability-curves were generated. The reliability (2-sided at 90% confidence bounds) for a 400N load at 100K cycles indicated values of 0.84 (0.98-0.24) for the hand-veneered FDPs and 0.50 (0.82-0.09) for their over-pressed counterparts. Conclusions Both zirconium-oxide FDP systems were resistant under accelerated-life-time-testing. Over-pressed specimens were more susceptible to fatigue loading with earlier veneer chipping.
Abstract:Nanostructure modification of dental implants has long been sought as a mean to improve osseointegration through enhanced biomimicry of host structures. Several methods have been proposed and demonstrated for creating nanotopographic features; here we described a nanoscale hydroxyapatite (HA) coated implant surface and hypothesized that it will hasten osseointegration and improve its quality relative to non-coated implants. Twenty threaded titanium alloy implants, half prepared with stable HA nanoparticle surface and half grit-blasted, acid-etched, and heat treated (HT), were inserted into rabbit femurs. Preoperatively, the implants were morphologically and topographically characterized. After 3 weeks of healing, the samples were retrieved for histomorphometry. Moreover, the nanomechanical properties of the surrounding bone were evaluated using nanoindentation. While both implants revealed similar bone-to-implant contact, the nanoindentation demonstrated that the tissue quality was significantly enhanced around the HA-coated implants, validating the postulated hypothesis.
Bone remodeling, along with tissue biomechanics, is critical for the clinical success of endosseous implants. This study evaluated the long-term evolution of the elastic modulus (GPa) and hardness (GPa) of cortical bone around human retrieved plateau root form implants. Thirty implant-in-bone specimens showing no clinical failure were retrieved from patients at different in-vivo times (0.3 to ~24 years) due to retreatment needs. After dehydration, specimens were embedded in methacrylate-based resin, sectioned along the bucco-lingual long axis and fixed to acrylic plates and nondecalcified processed to slides with ~50 μm in thickness. Nanoindentation testing was carried out under wet conditions on bone areas within the first three plateaus. Indentations (n = 120 per implant total) were performed with a maximum load of 300 μN (loading rate: 60 μN/s) followed by a holding and unloading time of 10 s and 2 s, respectively. Elastic modulus (E, GPa) and hardness (H, GPa) were computed. Both E and H values presented increased values as time in vivo elapsed (E: r = 0.84; H: r = 0.78). Significantly higher values for E and H were found after 5 years in vivo (p < 0.001). Maxillary or mandibulary arches or positioning did not affect mechanical properties, nor did implant surface treatment on the long-term bone biomechanical response (E: p ≥ 0.09; H: p ≥ 0.3). This work suggests that human cortical bone around plateau root form implants presents an increase in elastic modulus and hardness during the first 5 years following implantation and presents stable mechanical properties thereafter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.