Among dental implant design alterations, surface modifications have been by far the most investigated topic. Regarding implant surface research, the lack of hierarchical approaches relating in vitro, in vivo, clinical trials, and ex vivo analyses has hindered biomaterials scientists with clear informed rationale guidelines for implant surface design. This manuscript provides a critical hierarchical overview of the in vitro, laboratory in vivo, clinical, and ex vivo methodologies used to investigate the performance of novel biomaterials aiming to allow dental professionals to better evaluate the past, present, and future dental implant surface research. This manuscript also contains an overview of the commercially available surface texture and chemistry modifications including novel nanotechnology-based fabrication processes. Over the last decade, surface texturing has been the most utilized parameter for increasing the host-to-implant response. Recently, dental implant surfaces utilizing reduced length scale physico/chemical features (atomic and nanometric) have shown the potential to synergistically use both texture and the inclusion of bioactive ceramic components on the surface. Although surface modifications have been shown to enhance osseointegration at early implantation times, information concerning its long-term benefit to peri-implant tissues is lacking due to the reduced number of controlled clinical trials. Given the various implants/surfaces under study, the clinician should ask, founded on the basic hierarchical approach described for the in vitro, laboratory in vivo data, as well as the results of clinical studies to effectiveness before use of any dental implant.
The clinical success of modern dental ceramics depends on an array of factors, ranging from initial physical properties of the material itself, to the fabrication and clinical procedures that inevitably damage these brittle materials, and the oral environment. Understanding the influence of these factors on clinical performance has engaged the dental, ceramics, and engineering communities alike. The objective of this review is to first summarize clinical, experimental, and analytic results reported in the recent literature. Additionally, it seeks to address how this new information adds insight into predictive test procedures and reveals challenges for future improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.