CrossFit is high-intensity interval training involving routines called ‘workouts of the day’ (WOD). The aim of the present study is to analyse biochemical parameters and physical performance after two modalities of CrossFit WODs, and to evaluate 48-hour recovery. Twelve trained CrossFit practitioners (age: 30.4 ± 5.37 years; VO2max: 47.8 ± 3.63 ml/min/kg; 1RM Power Clean: 93.2 ± 7.62 kg) participated in the study. A crossover design was applied, and participants completed two modalities of WODs on separate days: WOD1 (as many rounds as possible) and WOD2 (rounds for time). Blood lactate, ratings of perceived exertion and heart rate were measured to determine the intensity of training sessions. Biochemical parameters and physical performance were evaluated before, immediately after, 24 hours after and 48 hours after exercise. There were significant differences in intensity between WOD1 and WOD2 (lactate: 13.3±1.87 vs. 18.38±2.02 mmol/L, heart rate mean: 127.6±11.1 vs. 159.8±12.1 bpm), and blood glucose concentrations were significantly higher after WOD2 (135.4 ± 19.6 vs. 167.4±19.6 mg/dL). After exercise, WOD1 and WOD2 caused significant increases of hepatic transaminases, creatine phosphokinase and blood glucose, as well as a large decrease in the physical performance evaluated by the plank test. All these values returned to baseline by 48 hours after exercise. Both WODs caused metabolic and muscular stress, as well as a decrease in physical performance. All the levels recovered at 48 hours, so the stress caused by CrossFit WODs did not induce a pathological state.
Background: The relative age effect is essential throughout all of the talent selection processes in sports, especially during adolescence, which leaves fewer athletes within each cohort that are born late in the selected year. The aim of the present study was to examine the role of relative age in anthropometric and physical performance characteristics of youth handball players by gender. Methods: The sample that was selected included 47 participants (male n = 23, female n = 24). The data collection included anthropometric, body compositions parameters, and physical performance levels. Results: There was a significantly higher representation of players in the first semester in comparison with the second semester, for all of the gender groups, except for the selected male players. In males, statistically significant differences were found in height, sitting height, weight, wingspan, arm and leg circumferences, and in throws speed (in support and in suspension) between those players that were born in the first and second semester. Conclusion: The results confirmed an effect of relative age in the players born in 2002 that were selected to participate in the Spanish Championship, which was different for males and females. In spite of this effect, which only appeared in females, significant differences in the anthropometric and physical conditions appeared in the male players.
A moderate hypoxic stimulus is considered a promising therapeutic modality for several pathological states including obesity. There is scientific evidence suggesting that when hypoxia and physical activity are combined, they could provide benefits for the obese population. The aim of the present study was to investigate if exposure to hypoxia combined with two different protocols of high-intensity interval exercise in overweight/obese women was more effective compared with exercise in normoxia. Study participants included 82 overweight/obese women, who started a 12 week program of 36 sessions, and were randomly divided into four groups: (1) aerobic interval training in hypoxia (AitH; FiO2 = 17.2%; n = 13), (2) aerobic interval training in normoxia (AitN; n = 15), (3) sprint interval training in hypoxia (SitH; n = 15), and (4) sprint interval training in normoxia (SitN; n = 18). Body mass, body mass index, percentage of total fat mass, muscle mass, basal metabolic rate, fat, and carbohydrate oxidation, and fat and carbohydrate energy were assessed. Outcomes were measured at baseline (T1), after 18 training sessions (T2), 7 days after the last session (T3), and 4 weeks after the last session (T4). The fat mass in the SitH group was significantly reduced compared with the SitN group from T1 to T3 (p < 0.05) and from T1 to T4 (p < 0.05) and muscle mass increased significantly from T1 to T4 (p < 0.05). Fat mass in the AitH group decreased significantly (p < 0.01) and muscle mass increased (p = 0.022) compared with the AitN group from T1 to T4. All training groups showed a reduction in the percentage of fat mass, with a statistically significant reduction in the hypoxia groups (p < 0.05). Muscle mass increased significantly in the hypoxia groups (p < 0.05), especially at T4. While fat oxidation tended to increase and oxidation of carbohydrates tended to decrease in both hypoxia groups, the tendency was reversed in the normoxia groups. Thus, high-intensity interval training under normobaric intermittent hypoxia for 12 weeks in overweight/obese women seems to be promising for reducing body fat content with a concomitant increase in muscle mass.
Camacho-Cardenosa, Alba, Marta Camacho-Cardenosa, Javier Brazo-Sayavera, Martin Burtscher, Rafael Timón, and Guillermo Olcina. Effects of high-intensity interval training under normobaric hypoxia on cardiometabolic risk markers in overweight/obese women. High Alt Med Biol. 16:000-000, 2018.-Promising benefits on cardiometabolic risk factors have been reported with prolonged programs of cyclic hypoxia. The aim of this study was to examine whether cyclic hypoxia exposure while exercising through two protocols of high-intensity interval training in overweight/obese women is more effective to improve cardiometabolic risk markers than exercising in normoxia. Participants included 86 overweight/obese women, who started a 12-week program of 36 sessions, and were randomly divided into four groups: (1) interval training in hypoxia (IHT; FIO = 17.2%; n = 13), (2) interval training in normoxia (INT; n = 15), which included 3-minute high-intensity exercise (90% Wmax) followed by 3 minutes of active recovery (55%-65% Wmax), (3) repeated-sprint training in hypoxia (RSH; FIO = 17.2%; n = 15), and (4) repeated-sprint training in normoxia (RSN; n = 18), which included 30 seconds of all-out effort (130% Wmax) followed by 3 minutes of active recovery (55%-65% Wmax). Body composition, anthropometric, biochemical, and clinical parameters were assessed at baseline (A), after 18 training sessions (B), and during the 7 days after the last session (C). IHT and RSH showed a significant (p < 0.001 and p = 0.016, respectively) decrease in the waist circumference at both B and C assessments compared with A. Hypoxia groups presented a significant reduction in the percentage of trunk fat with a moderate effect size (IHT: d = 0.56; RSH: d = 0.93). In the normoxia groups, total cholesterol (CHOL) tended to decrease (INT: -4.21% and RSN: -5.18%), whereas it tended to increase in the hypoxia groups (IHT: +2.91% and RSH +4.07%). An interaction effect between conditions (through pooled data) on waist circumference (p = 0.01), percentage of trunk fat mass (p < 0.001), and CHOL (p = 0.019) was observed. Both training regimens under normobaric cyclic hypoxia were more effective at causing decreased abdominal fat in overweight/obese women than the same protocols in normoxia.
The use of mesenchymal stem-cells (MSC) in cell therapy has received considerable attention because of their properties. These properties include high expansion and differentiation in vitro , low immunogenicity, and modulation of biological processes, such as inflammation, angiogenesis and hematopoiesis. Curiously, the regenerative effect of MSC is partly due to their paracrine activity. This has prompted numerous studies, to investigate the therapeutic potential of their secretome in general, and specifically their extracellular vesicles (EV). The latter contain proteins, lipids, nucleic acids, and other metabolites, which can cause physiological changes when released into recipient cells. Interestingly, contents of EV can be modulated by preconditioning MSC under different culture conditions. Among them, exposure to hypoxia stands out; these cells respond by activating hypoxia-inducible factor (HIF) at low O 2 concentrations. HIF has direct and indirect pleiotropic effects, modulating expression of hundreds of genes involved in processes such as inflammation, migration, proliferation, differentiation, angiogenesis, metabolism, and cell apoptosis. Expression of these genes is reflected in the contents of secreted EV. Interestingly, numerous studies show that MSC-derived EV conditioned under hypoxia have a higher regenerative capacity than those obtained under normoxia. In this review, we show the implications of hypoxia responses in relation to tissue regeneration. In addition, hypoxia preconditioning of MSC is being evaluated as a very attractive strategy for isolation of EV, with a high potential for clinical use in regenerative medicine that can be applied to different pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.