STAT5 proteins are components of the common growth hormone and interleukin 2 family of cytokines' signaling pathway. Mutations in the STAT5b gene, described in 2 patients, lead to growth hormone insensitivity that resembles Laron syndrome. Clinical immunodeficiency was also present, although immunologic defects have not been well characterized thus far. Here we describe a 16-year-old girl who suffered generalized eczema and recurrent infections of the skin and respiratory tract since birth. She also suffered severe chronic lung disease and multiple episodes of herpetic keratitis. Clinical features of congenital growth hormone deficiency were observed, such as persistently low growth rate, severely delayed bone age, and postnatal growth failure resulting from growth hormone resistance. This combined phenotype of growth hormone insensitivity and immunodeficiency was attributable to a homozygous C-->T transition that resulted in a nonsense mutation at codon 152 in exon 5 of the STAT5b gene. This novel mutation determined a complete absence of protein expression. The main immunologic findings were moderate T-cell lymphopenia (1274/mm3), normal CD4/CD8 ratio, and very low numbers of natural killer (18/mm3) and gammadelta T (5/mm3) cells. T cells presented a chronically hyperactivated phenotype. In vitro T-cell proliferation and interleukin 2 signaling were impaired. CD4+ and CD25+ regulatory T cells were significantly diminished, and they probably contributed to the signs of homeostatic mechanism deregulation found in this patient. This new case, in accordance with 2 previously reported cases, definitely demonstrates the significant role of the STAT5b protein in mediating growth hormone actions. Furthermore, the main immunologic findings bring about an explanation for the clinical immunodeficiency features and reveal for the first time the relevant role of STAT5b as a key protein for T-cell functions in humans.
A high percentage of CYP21A2 affected alleles is detected by the 11-mutation screening study. Genotype-phenotype correlation was high, but when the phenotype is more severe than predicted by genotype, presence of two alterations in one allele should be ruled out.
Background: Three novel heterozygous SF-1 gene mutations affecting multiple members of two unrelated families with a history of 46,XY disorders of sex development (DSD) and 46,XX ovarian insufficiency are described. Methods: Clinical and mutational analysis of the SF-1 gene in 9 subjects of two families. Results: Family 1 had 2 affected 46,XY DSD subjects. One, born with severe perineal hypospadias, was raised as a male, and presented normal adolescence. The other, born with ambiguous genitalia, uterus, and mild testicular dysgenesis, was raised as a female. A W279X heterozygous mutation and an intronic deletion (g3314-3317delTCTC (IVS 4 + 8) was found in the SF-1 gene. In family 2, 4/6 affected siblings had 46,XY DSD or hypospadias. An affected 46,XX sister had normal sexual development but increased FSH levels. The 37-year-old affected mother had entered menopause. An Y183X heterozygous mutation was detected. Conclusion: An extreme within-family phenotypic variability, ranging from severe prenatal undervirilization to normal pubertal development, was observed in 46,XY-affected siblings, indicating that other unknown factors might be involved in the phenotype. Low ovarian reserve and preserved fertility in 46,XX subjects can be observed in heterozygous SF-1 gene mutations.
In humans, steroidogenic factor 1 (NR5A1/SF-1) mutations have been reported to cause gonadal dysgenesis, with or without adrenal failure, in both 46,XY and 46,XX individuals. We have previously reported extreme within-family variability in affected 46,XY patients. Even though low ovarian reserve with preserved fertility has been reported in females harboring NR5A1 gene mutations, fertility has only been observed in one reported case in affected 46,XY individuals. A kindred with multiple affected members presenting gonadal dysgenesis was studied. Four 46,XY individuals presented severe hypospadias at birth, one of them associated with micropenis and cryptorchidism. The other 3 developed spontaneous male puberty, and 1 has fathered 5 children. Four 46,XX patients presented premature ovarian failure (one of them was not available for the study) or high follicle-stimulating hormone levels. Mutational analysis of the NR5A1 gene revealed a novel heterozygous mutation, c.938G→A, predicted to cause a p.Arg313Hys amino acid change. A highly conserved amino acid of the ligand-binding domain of the mature protein is affected, predicting abnormal protein function. We confirm that preserved fertility can be observed in patients with a 46,XY disorder of sex development due to heterozygous mutations in the NR5A1 gene.
In isolated TSH deficiency, the exact molecular diagnosis is mandatory for diagnosis of isolated pituitary deficiency, delineation of prognosis, and genetic counseling. Moreover, diagnosis of central hypothyroidism should be considered in the face of severe infant anemia of uncertain etiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.