Since the late 1980s, the scientific community has been attracted to microwave energy as an alternative method of heating, due to the advantages that this technology offers over conventional heating technologies. In fact, differently from these, the microwave heating mechanism is a volumetric process in which heat is generated within the material itself, and, consequently, it can be very rapid and selective. In this way, the microwave-susceptible material can absorb the energy embodied in the microwaves. Application of the microwave heating technique to a chemical process can lead to both a reduction in processing time as well as an increase in the production rate, which is obtained by enhancing the chemical reactions and results in energy saving. The synthesis and sintering of materials by means of microwave radiation has been used for more than 20 years, while, future challenges will be, among others, the development of processes that achieve lower greenhouse gas (e.g., CO 2 ) emissions and discover novel energy-saving catalyzed reactions. A natural choice in such efforts would be the combination of catalysis and microwave radiation. The main aim of this review is to give an overview of microwave applications in the heterogeneous catalysis, including the preparation of catalysts, as well as explore some selected microwave assisted catalytic reactions. The review is divided into three principal topics: (i) introduction to microwave chemistry and microwave materials processing; (ii) description of the loss mechanisms and microwave-specific effects in heterogeneous catalysis; and (iii) applications of microwaves in some selected chemical processes, including the preparation of heterogeneous catalysts.A chemical process is conventionally energized by means of conductive heating with a steam boiler as a typical heat source. Nevertheless, a large variety of other forms of energy can be applied for PI, including ultrasounds (for reactions or crystal nucleation), light (in photocatalytic processes), electric fields (in extraction or for orientation of molecules), or microwaves. The microwave (dielectric) heating of materials has been known for a long time, and microwave ovens have been developed from more than 60 years. The studies by Gedye et al. in 1986 and 1988 [3,4] opened a period of very intensive investigation of the microwave effects on chemical reactions in homogeneous systems. Since then, hundreds of research papers have been published, and research has also expanded toward heterogeneous catalysis and its related chemical processes. This review gives an overview of the application of microwave technology to heterogeneous catalysis, including various chemical processes, as well as to the preparation of catalysts.
Plasma science has attracted the interest of researchers in various disciplines since the 1990s. This continuously evolving field has spawned investigations into several applications, including industrial sterilization, pollution control, polymer science, food safety and biomedicine. nonthermal plasma (NTP) can promote the occurrence of chemical reactions in a lower operating temperature range, condition in which, in a conventional process, a catalyst is generally not active. The aim, when using NTP, is to selectively transfer electrical energy to the electrons, generating free radicals through collisions and promoting the desired chemical changes without spending energy in heating the system. Therefore, NTP can be used in various fields, such as NOx removal from exhaust gases, soot removal from diesel engine exhaust, volatile organic compound (VOC) decomposition, industrial applications, such as ammonia production or methanation reaction (Sabatier reaction). The combination of NTP technology with catalysts is a promising option to improve selectivity and efficiency in some chemical processes. In this review, recent advances in selected nonthermal plasma assisted solid–gas processes are introduced, and the attention was mainly focused on the use of the dielectric barrier discharge (DBD) reactors.
The growing demand for energy production highlights the shortage of traditional resources and the related environmental issues. The adoption of bioalcohols (i.e., alcohols produced from biomass or biological routes) is progressively becoming an interesting approach that is used to restrict the consumption of fossil fuels. Bioethanol, biomethanol, bioglycerol, and other bioalcohols (propanol and butanol) represent attractive feedstocks for catalytic reforming and production of hydrogen, which is considered the fuel of the future. Different processes are already available, including steam reforming, oxidative reforming, dry reforming, and aqueous-phase reforming. Achieving the desired hydrogen selectivity is one of the main challenges, due to the occurrence of side reactions that cause coke formation and catalyst deactivation. The aims of this review are related to the critical identification of the formation of carbon roots and the deactivation of catalysts in bioalcohol reforming reactions. Furthermore, attention is focused on the strategies used to improve the durability and stability of the catalysts, with particular attention paid to the innovative formulations developed over the last 5 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.