BACKGROUND A growing body of research shows that mindfulness meditation can alter neural, behavioral and biochemical processes. However, the mechanisms responsible for such clinically relevant effects remain elusive. METHODS Here we explored the impact of a day of intensive practice of mindfulness meditation in experienced subjects (n= 19) on the expression of circadian, chromatin modulatory and inflammatory genes in peripheral blood mononuclear cells (PBMCs). In parallel, we analyzed a control group of subjects with no meditation experience who engaged in leisure activities in the same environment (n= 21). PBMCs from all participants were obtained before (t1) and after (t2) the intervention (t2-t1= 8 hours) and gene expression was analyzed using custom pathway focused quantitative-real time PCR assays. Both groups were also presented with the Trier Social Stress Test (TSST). RESULTS Core clock gene expression at baseline (t1) was similar between groups and their rhythmicity was not influenced in meditators by the intensive day of practice. Similarly, we found that all the epigenetic regulatory enzymes and inflammatory genes analyzed exhibited similar basal expression levels in the two groups. In contrast, after the brief intervention we detected reduced expression of histone deacetylase genes (HDAC2, 3 and 9), alterations in global modification of histones (H4ac; H3K4me3) and decreased expression of pro-inflammatory genes (RIPK2 and COX2) in meditators compared with controls. We found that the expression of RIPK2 and HDAC2 genes was associated with a faster cortisol recovery to the TSST in both groups. CONCLUSIONS The regulation of HDACs and inflammatory pathways may represent some of the mechanisms underlying the therapeutic potential of mindfulness-based interventions. Our findings set the foundation for future studies to further assess meditation strategies for the treatment of chronic inflammatory conditions.
Plasma microRNAs (miRNAs) have been proposed as potential biomarkers in Alzheimer's disease (AD). Here, we explored their use as early sensors of the preclinical phase of the disease, when brain pathology is being developed and no cognitive loss is detected. For this purpose, we analyzed a set of ten mature plasma miRNAs in symptomatic patients with AD from a cohort that also included healthy controls (HC) and patients with preclinical Alzheimer's disease (PAD) (cohort 1). Plasmas from subjects with Parkinson's disease (PD) were used to control for disease specificity. We found that miR-15b-5p, miR-34a-5p, miR-142-3p, and miR-545-3p levels significantly distinguished AD from PD and HC subjects. We next examined the expression of these four miRNAs in plasma from subjects with PAD. Among these, miR-34a-5p and miR-545-3p presented good diagnostic accuracy to distinguish both AD and PAD from HC subjects, according to the receiver operating characteristic (ROC) curve analysis. Both miRNAs also demonstrated a significant positive correlation with Aβ1-42 levels in cerebrospinal fluid (CSF). Taking into account the clinical potential of these findings, we decided to validate the diagnostic accuracy of miR-34a-5p and miR-545-3p in plasma samples from an independent cohort (cohort 2), in which we did not observe the alterations described by us and others in AD and PAD samples. Although miR-34a-5p and miR-545-3p might be promising early biomarker candidates for AD, our study highlights possible sources of variability in miRNA analysis across hospitals, which currently prevents their use as reliable clinical tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.