ProAKAP4 is the precursor of AKAP4 (A-kinase Anchor protein 4), the main structural protein of the fibrous sheath of sperm. The amount of proAKAP4 reflects the ability of spermatozoa to maintain the flagellum activity and functionality up to the site of fertilization and is positively correlated with progressive motility in several mammalian species. The aim of this study was to investigate the relationship between proAKAP4 concentration with horse sperm motility descriptors and spermatic motile subpopulations. For this purpose, a total of 48 ejaculates from 13 different stallions were analyzed. Spermatic motility descriptors were obtained by the CASA system, and four motile subpopulations (SP) with specific motility patterns were statistically identified. ProAKAP4 concentrations were evaluated by ELISA. The relationship between motility descriptors of sperm subpopulations and proAKAP4 concentrations was evaluated. Following a hierarchical cluster statistical analysis, ejaculates were divided into two groups according to their proAKAP4 concentrations, either having low proAKAP4 concentrations (5.06–35.61 ng/10M spz; n = 23) or high (39.92–82.23 ng/10M spz; n = 25) proAKAP4 concentrations (p < 0.001). ProAKAP4 concentrations were positively correlated (p < 0.05) with total and progressive motility, as well as with parameters of velocity. ProAKAP4 amount also showed a negative correlation (p < 0.05) with sperm motile subpopulation number 3, which was the subpopulation with the lowest velocity parameters. In conclusion, proAKAP4 concentration in stallion semen positively reflects sperm progressive motility with the functional velocity kinematic descriptors. Concentrations of proAKAP4 higher than 37.77 ng/10M spz were correlated with a very good quality frozen/thawed stallion semen.
Functional sperm quality markers to predict bull fertility have been actively investigated. Among them, proAKAP4, which is the precursor of AKAP4, the main structural protein in the fibrous sheath of spermatozoa; appears to be promising, especially since spermatozoa lacking AKAP4 expression were shown to be immotile, abnormal, and infertile. In this study, the objective was to evaluate proAKAP4 concentration values with the classic sperm motility descriptors and fertility outcomes (NRR at 90 days) in post-thawed conditions of 10 bulls’ semen. ProAKAP4 expression was confirmed by Western blotting and proAKAP4 concentrations were determined by ELISA. Variations in proAKAP4 concentrations were observed independently of the motility sperm descriptors measured using computer-assisted semen analysis (CASA). A ProAKAP4 concentration of 38.67 ± 8.55 ng/10 million spermatozoa was obtained as a statistical mean of all samples. Threshold values of proAKAP4 were then determined between 19.96 to 96.95 ng/10 million spermatozoa. ProAKAP4 concentrations were positively correlated with progressive motility and the linearity coefficient. The sperm showing the lowest progressive motility were the samples exhibiting proAKAP4 concentrations below 20 ng/10 million spermatozoa. Furthermore, proAKAP4 concentrations were significantly higher in bulls with a higher NRR in the field. Our results demonstrate a correlation between the semen concentration of proAKAP4 and NRR-90d (p = 0.05) in post-thawed bull semen, highlighting the potential of proAKAP4 as a predictive marker of bull fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.