Understanding interactions between functional nanoparticles and lipid bilayers is important to many emerging biomedical and bioanalytical applications. In this paper, we report incorporation of hydrophobic cadmium sulphide quantum dots (CdS QDs) into mixed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) liposomes, and into their supported bilayers (SLBs). The QDs were found embedded in the hydrophobic regions of the liposomes and the supported bilayers, which retained the QD fluorescent properties. In particular, we studied the effect of the QD size (2.7-5.4 nm in diameter) on the formation kinetics and structure of the supported POPC/POPE bilayers, monitored in situ using quartz crystal microbalance with dissipation monitoring (QCM-D), as the liposomes ruptured onto the substrate. The morphology of the obtained QD-lipid hybrid bilayers was studied using atomic force microscopy (AFM), and their structure by synchrotron X-ray reflectivity (XRR). It was shown that the incorporation of hydrophobic QDs promoted bilayer formation on the PEI cushion, evident from the rupture and fusion of the QD-endowed liposomes at a lower surface coverage compared to the liposomes without QDs. Furthermore, the degree of disruption in the supported bilayer structure caused by the QDs was found to be correlated with the QD size. Our results provide mechanistic insights into the kinetics of the rupturing and formation process of QD-endowed supported lipid bilayers via liposome fusion on polymer cushions.
The formation of complete supported lipid bilayers by vesicle adsorption and rupture was studied in relation to deposition conditions of vesicles and underlying cushion formed from various polyelectrolytes. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer of various pH with or without NaCl addition. Polyelectrolyte multilayer films (PEM) were constructed by sequential adsorption of alternately charged polyelectrolytes from their solutions-layer-by-layer deposition (LBL). The mechanism of the formation of supported lipid bilayer on polyelectrolyte films was studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). QCM-D allowed following the adsorption kinetics while AFM measurements verified the morphology of lipid vesicles and isolated bilayer patches on the PEM cushions providing local topological images in terms of lateral organization. Additionally, polyelectrolyte cushions were characterized with ellipsometry to find thickness and swelling properties, and their roughness was determined using AFM. It has been demonstrated that the pH value and an addition of NaCl in the buffer solution as well as the type of the polyelectrolyte cushion influence the kinetics of bilayer formation and the quality of formed bilayer patches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.