In this study, we investigated the effects of acute administration of nicotine on memory-related behavior in mice using the elevated plus maze test. In this test, the time necessary for mice to move from the open arm to the enclosed arm (i.e., transfer latency) was used as an index of memory. Our results revealed that nicotine (0.035 and 0.175 mg/kg, base, sc) shortened the transfer latency relative to the saline-treated group. Moreover, we investigated the effects of bupropion (10, 20 and 40 mg/kg, ip) and L-type voltage-dependent calcium channel antagonists (nimodipine, flunarizine, verapamil, diltiazem - 5, 10 and 20 mg/kg, ip) on memory-related behavior. At all tested doses, bupropion, did not significantly affect transfer latency. However, flunarizine and verapamil (both at 10 mg/kg) resulted in a slight decrease in transfer latency, whereas nimodipine (10 mg/kg) increased transfer latency. Interestingly, both bupropion (20 mg/kg) and calcium channel blockers (5 mg/kg) attenuated the improvement of memory induced by nicotine. Our findings indicate that the cholinergic nicotinic system may play an important role in memory consolidation, and that neural calcium-dependent mechanisms can be involved in the modulation of memory-related responses induced by nicotine. The results of these studies have revealed neuronal mechanisms that are important for nicotinic modulation of cognition and will be useful for the treatments of human disorders in which cholinergic pathways have been implicated, such as psychiatric disorders and addiction.
Tobacco and cannabis are among the most widely abused drugs in humans, and recently, the functional interaction between nicotine and cannabinoids has been reported. The aim of the present studies is to evaluate the role of CB1 cannabinoid receptors in the reinstatement of nicotine-induced conditioned place preference. Nicotine-induced conditioned place preference was established (three-day nicotine sessions, 0.5 mg/kg), extinguished and reinstated by a priming dose of nicotine. It was shown that the CB1 receptor antagonist AM 251 (0.25 and 0.5 mg/kg) in a dose-dependent manner attenuates the reinstatement of nicotine place conditioning. These studies suggest a role for CB1 cannabinoids receptors in preventing the reinstatement of nicotine addiction.
The purpose of our experiments was to examine the influence of cholinergic receptor ligands on memory-related behavior in mice using the elevated plus maze (EPM) test. The EPM test allows the exploration of different memory processes (acquisition and consolidation), depending on the time of drug treatment. The time necessary for mice to move from the opened arm to the enclosed arm (i.e., transfer latency, TL) was used as an index of memory. Our findings reveal that for both the processes of acquisition and consolidation, treatment with nicotine (0.035 or 0.175 mg/kg, free base, sc) shortened TL on the second day of the experiments (TL2), thus improving memory processes. Treatment with scopolamine (0.3 or 1.0 mg/kg, ip) significantly increased TL2 values, thus impairing cognitive processes. Moreover, we found that treatment with nicotine, at the non-effective doses used during testing, prevented scopolamine-induced memory impairment by inducing a decrease in TL2 values. Next, we evaluated the influence of bupropion (10 or 20 mg/kg, ip), a drug currently used for smoking cessation in humans, on memory-related behavior induced by treatment with nicotine and scopolamine. An acute injection of bupropion (10 or 20 mg/kg) prior to injection with either nicotine (0.035 mg/kg) or scopolamine (1.0 mg/kg) significantly prevented nicotine-induced memory improvement or scopolamine-induced memory impairment. Bupropion treatment can diminish the rewarding (dependence-producing) effects of nicotine and also the cognitive effects that are related to addiction. Our studies further indicate the great involvement of the cholinergic system in memory processes and the potential for the development of more effective pharmacotherapies for memory impairment-like human disorders in which the cholinergic pathways have been implicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.