BackgroundAlthough the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.ConclusionsUnderstanding the molecular mechanisms of response to low dose radiation is crucial for the proper evaluation of risks and benefits that stem from these exposures and should be considered in the radiotherapy treatment planning and in determining the allowed occupational exposures.
The implication of the let-7 family in cancer development is multifaceted. The family acts as tumor suppressor miRNA although overexpression of let-7 has also been described in many types of cancer, including head and neck squamous cell carcinoma (HNSCC). The aim of this study includes whether different expression levels of let-7d has an influence on chemo- and radiosensitivity. FaDu cell line models with a gradually increased level of let-7d (models from A to E) were generated with the lentiviral system. Expression levels of pluripotency, chemo-radioresistance/apoptosis, and targets of mRNAs were analyzed by real-time reverse transcription-PCR (qRT-PCR). Radiosensitivity was analyzed using a clonogenic assay after irradiation. Response to cisplatin, 5-FU, doxorubicin, and paclitaxel was done with MTT assay. Statistically significant decrease of K-RAS (p = 0.0369) and CASPASE3 (p = 0.0342) were observed with the growing expression level of let-7d. Cisplatin, 5-FU and doxorubicin caused similar decreased of cell survival with the increase of let-7d level (p = 0.004, post-trend p = 0.046; p = 0.004, post trend p = 0.0005 and p<0.0001, post trend p = 0.0001, respectively). All models were resistant to paclitaxel, irrespective of let-7d expression levels. Only two of the generated models (A and C) were radiosensitive (p = 0.0002). Conclusion: the above results indicated that the level of let-7d expression is an important factor for cell response to irradiation and chemotherapeutics.
this article is available in open access under creative common attribution-Non-commercial-No Derivatives 4.0 international (cc BY-Nc-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.