Animal models serve as powerful tools for investigating the pathobiology of cancer, identifying relevant pathways, and developing novel therapeutic agents. They have facilitated rapid scientific progress in many tumor entities. However, for establishing a powerful animal model of uveal melanoma fundamental challenges remain. To date, no animal model offers specific genetic attributes as well as histologic, immunologic, and metastatic features of uveal melanoma. Syngeneic models with intraocular injection of cutaneous melanoma cells may suit best for investigating immunologic/tumor biology aspects. However, differences between cutaneous and uveal melanoma regarding genetics and metastasis remain problematic. Human xenograft models are widely used for evaluating novel therapeutics but require immunosuppression to allow tumor growth. New approaches aim to establish transgenic mouse models of spontaneous uveal melanoma which recently provided preliminary promising results. Each model provides certain benefits and may render them suitable for answering a respective scientific question. However, all existing models also exhibit relevant limitations which may have led to delayed research progress. Despite refined therapeutic options for the primary ocular tumor, patients' prognosis has not improved since the 1970s. Basic research needs to further focus on a refinement of a potent animal model which mimics uveal melanoma specific mechanisms of progression and metastasis. This review will summarise and interpret existing animal models of uveal melanoma including recent advances in the field.
Uveal melanoma (UM) is the most frequent primary intraocular tumor in Caucasian adults and is potentially fatal if metastases develop. While several prognostic genetic changes have been identified in UM, epigenetic influences are now getting closer attention. Recent technological advances have allowed to exam the human genome to a greater extent and have improved our understanding of several diseases including malignant tumors. In this context, there has been tremendous progress in the field of UM pathogenesis. Herein, we review the literature with emphasis on genetic alterations, epigenetic modifications and signaling pathways as well as possible biomarkers in UM. In addition, different research models for UM are discussed. New insights and major challenges are outlined in order to evaluate the current status for this potentially devastating disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.