The endophyte Azoarcus sp. BH72, fixing nitrogen microaerobically, encounters low O tensions in flooded roots. Therefore, its transcriptome upon shift to microaerobiosis was analyzed using oligonucleotide microarrays. A total of 8.7% of the protein-coding genes were significantly modulated. Aerobic conditions induced expression of genes involved in oxidative stress protection, while under microaerobiosis, 233 genes were upregulated, encoding hypothetical proteins, transcriptional regulators, and proteins involved in energy metabolism, among them a cbb -type terminal oxidase contributing to but not essential for N fixation. A newly established sensitive transcriptional reporter system using tdTomato allowed to visualize even relatively low bacterial gene expression in association with roots. Beyond metabolic changes, low oxygen concentrations seemed to prime transcription for plant colonization: Several genes known to be required for endophytic rice interaction were induced, and novel bacterial colonization factors were identified, such as azo1653. The cargo of the type V autotransporter Azo1653 had similarities to the attachment factor pertactin. Although for short term swarming-dependent colonization, it conferred a competitive disadvantage, it contributed to endophytic long-term establishment inside roots. Proteins sharing such opposing roles in the colonization process appear to occur more generally, as we demonstrated a very similar phenotype for another attachment protein, Azo1684. This suggests distinct cellular strategies for endophyte establishment.
Research on the interaction between the non-nodule-forming bacterial endophytes and their host plants is still in its infancy. Especially the understanding of plant control mechanisms which govern endophytic colonization is very limited. The current study sets out to determine which hormonal signaling pathway controls endophytic colonization in rice, and whether the mechanisms deviate for a pathogen. The endophyte Azoarcus olearius BH72-rice model was used to investigate root responses to endophytes in comparison to the recently established pathosystem of rice blight Xanthomonas oryzae pv. oryzae PXO99 (Xoo) in flooded roots. In the rice root transcriptome, 523 or 664 genes were found to be differentially expressed in response to Azoarcus or Xoo colonization, respectively; however, the response was drastically different, with only 6% of the differentially expressed genes (DEGs) overlapping. Overall, Xoo infection induced a much stronger defense reaction than Azoarcus colonization, with the latter leading to down-regulation of many defense related DEGs. Endophyte-induced DEGs encoded several enzymes involved in phytoalexin biosynthesis, ROS (reactive oxygen species) production, or pathogenesis-related (PR) proteins. Among putative plant markers related to signal transduction pathways modulated exclusively during Azoarcus colonization, none overlapped with previously published DEGs identified for another rice endophyte, Azospirillum sp. B510. This suggests a large variation in responses of individual genotypic combinations. Interestingly, the DEGs related to jasmonate (JA) signaling pathway were found to be consistently activated by both beneficial endophytes. In contrast, the salicylate (SA) pathway was activated only in roots infected by the pathogen. To determine the impact of SA and JA production on root colonization by the endophyte and the pathogen, rice mutants with altered hormonal responses were employed: mutant cpm2 deficient in jasmonate synthesis, and RNA interference (RNAi) knockdown lines of NPR1 decreased in salicylic acid-mediated defense responses (NPR1-kd). Only in cpm2, endophytic colonization of Azoarcus was significantly increased, while Xoo colonization was not affected. Surprisingly, NPR1-kd lines showed slightly decreased colonization by Xoo, contrary to published results for leaves. These outcomes suggest that JA but not SA
The UvrA protein is a DNA-binding and damage-recognition enzyme which participates in the prokaryotic type nucleotide excision repair (NER) pathway. It has recently been noted that some bacterial genomes comprise additional uvrA genes which encode five distinct types of UvrA homologue. We investigated the sequences of over 2400 bacterial genomes and found 130 examples of bacteria containing uvrA 2 genes. The sequence analyses conducted on these UvrA homologues revealed that the previously established division of UvrA proteins might be based on some incorrect assumptions. In this paper, we present the reasons for our creation of a new division of UvrA homologues and a description of the four UvrA classes we have created.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.