The paper deals with a problem of automatic identification system (AIS) data analysis, especially eliminating the impact of AIS packet collision and detecting existing outliers in AIS data. To solve this problem, a clustering-based approach is proposed. AIS is a system that supports the exchange of information between vessels about their trajectories, e.g. position, speed or course. However, SAT-AIS, which enables the system to work on a global scale, struggles against packet collisions due to the fact that the satellite, which receives AIS data from ships, has a field of view that covers multiple areas that are not synchronized among themselves. As a result, the received data is difficult to process by AIS receivers, because most of the messages have a character of noise. In this paper, results of a computational experiment using k-means algorithm for packet recovery and for dealing with noise have been presented. The outcome proves that a clustering-based approach could be used as an initial step in AIS packet reconstruction, when the original data is incorrect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.