SummaryVascular endothelial dysfunction occurs during the human aging process, and it is considered as a crucial event in the development of many vasculopathies. We investigated the underlying mechanisms of this process, particularly those related with oxidative stress and inflammation, in the vasculature of subjects aged 18-91 years without cardiovascular disease or risk factors. In isolated mesenteric microvessels from these subjects, an age-dependent impairment of the endotheliumdependent relaxations to bradykinin was observed. Similar results were observed by plethysmography in the forearm blood flow in response to acetylcholine. In microvessels from subjects aged less than 60 years, most of the bradykinin-induced relaxation was due to nitric oxide release while the rest was sensitive to cyclooxygenase (COX) blockade. In microvessels from subjects older than 60 years, this COX-derived vasodilatation was lost but a COX-derived vasoconstriction occurred. Evidence for age-related vascular oxidant and inflammatory environment was observed, which could be related to the development of endothelial dysfunction. Indeed, aged microvessels showed superoxide anions (O 2 ) ) and peroxynitrite (ONOO ) ) formation, enhancement of NADPH oxidase and inducible NO synthase expression. Pharmacological interference of COX, thromboxane A 2 ⁄ prostaglandin H 2 receptor, O 2, inducible NO synthase, and NADPH oxidase improved the age-related endothelial dysfunction. In situ vascular nuclear factor-jB activation was enhanced with age, which correlated with endothelial dysfunction. We conclude that the age-dependent endothelial dysfunction in human vessels is due to the combined effect of oxidative stress and vascular wall inflammation.
Being the metabolic syndrome a multifactorial condition, it is difficult to find adequate experimental models to study this pathology. The obese Zucker rats, which are homozygous for the fa allele, present abnormalities similar to those seen in human metabolic syndrome and are a widely extended model of insulin resistance. The usefulness of these rats as a model of non-insulin-dependent diabetes mellitus is nevertheless questionable, and they neither can be considered a clear experimental model of hypertension. Some experimental models different from the obese Zucker rats have also been used to study the metabolic syndrome. Some derive from the spontaneously hypertensive rats (SHR). In this context, the most important are the obese SHR, usually named Koletsky rats. Hyperinsulinism, associated with either normal or slightly elevated levels of blood glucose, is present in these animals, but SHR/N-corpulent rats are a more appropriated model of non-insulin-dependent diabetes mellitus. The SHR/NDmc corpulent rats, a subline of SHR/N-corpulent rats, also exhibit metabolic and histopathologic characteristics associated with human metabolic disorders. A new animal model of the metabolic syndrome, stroke-prone -SHR (SHRSP) fatty rats, was obtained by introducing a segment of the mutant leptin receptor gene from the Zucker line heterozygous for the fa gene mutation into the genetic background of the SHRSP. Very recently, it has been developed as a non-obese rat model with hypertension, fatty liver and characteristics of the metabolic syndrome by transgenic overexpression of a sterol-regulatory element-binding protein in the SHR rats. The Wistar Ottawa Karlsburg W rats are also a new strain that develops a nearly complete metabolic syndrome. Moreover, a new experimental model of low-capacity runner rats has also been developed with elevated blood pressure levels together with the other hallmarks of the metabolic syndrome.Zucker rats: Obesity: Metabolic syndrome: Insulin resistanceThe metabolic syndrome has been recognised in the medical literature for more than 80 years. The syndrome does not constitute one single illness. Instead, it can be defined as a group of health problems, caused by genetic and environmental factors, whose common fundamental pathogenic component is resistance to insulin. These problems may occur in one individual simultaneously or one by one, but their appearance together in one person is significant as these patients are more prone to CVD in general and to coronary disease in particular.In its Third Panel of Adult Treatment, part of the National Program for Cholesterol Education, the U.S. National Health Institute gave a definition of the metabolic syndrome based on risk factors, which is straightforward to apply in epidemiological studies and daily clinical practice (1) . This definition does not require direct demonstration of resistance to insulin, which in clinical practice may be difficult to establish. The metabolic syndrome is assumed to exist when three or more of the following risk factor...
The study aimed to investigate whether the Egg White Hydrolysate (EWH) is able to prevent the recognition memory disorders associated with long-term Hg exposure in by atomic fluorescence spectrometry. We confirm that the STM and LTM were impaired in adult rats exposed to Hg at low concentrations, which may be related to the increased metal deposition, ROS production and subsequent oxidative damage in the hippocampus. In addition, we demonstrated for the first time that EWH treatment is able to prevent memory impairment induced by Hg exposure, reducing Hg content and ROS production in the hippocampus. In conclusion, EWH prevents memory impairments induced by chronic exposure to low doses of Hg. These findings may represent a good public health strategy since they indicate that EWH is a promising candidate as a new natural therapy for heavy metal intoxication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.