The stomach is responsible for the processing of nutrients as well as for the secretion of various hormones which are involved in many activities throughout the gastrointestinal tract. Experimental adult male Wistar rats (n = 6) underwent a modified gastrectomy, while control rats (n = 6) were sham-operated. After six weeks, changes in small intestine (including histomorphometrical parameters of the enteric nervous plexuses) and liver morphology, immunolocalization of leptin, ghrelin and nesfatin-1 as well as proteins forming adherens and tight junctions (E-cadherin, zonula occludens-1, occludin, marvelD3) in intestinal mucosa were evaluated. A number of effects on small intestine morphology, enteric nervous system ganglia, hormones and proteins expression were found, showing intestinal enteroplasticity and neuroplasticity associated with changes in gastrointestinal tract condition. The functional changes in intestinal mucosa and the enteric nervous system could be responsible for the altered intestinal barrier and hormonal responses following gastrectomy. The results suggest that more complicated regulatory mechanisms than that of compensatory mucosal hypertrophy alone are involved.
The investigations on the response of bone tissue under different loading conditions are important from clinical and engineering points of view. In this paper, the influence of nesfatin-1 administration on rat humerus mechanical properties was analyzed. The classical three-point bending and impact tests were carried out for three rat bone groups: control (SHO), the humerus of animals under the conditions of established osteopenia (OVX), and bones of rats receiving nesfatin-1 after ovariectomy (NES). The experiments proved that the bone strength parameters measured under various mechanical loading conditions increased after the nesfatin-1 administration. The OVX bones were most susceptible to deformation and had the smallest fracture toughness. The SEM images of humerus fracture surface in this group showed that ovariectomized rats had a much looser bone structure compared to the SHO and NES females. Loosening of the bone structure was also confirmed by the densitometric and qualitative EDS analysis, showing a decrease in the OVX bones’ mineral content. The samples of the NES group were characterized by the largest values of maximum force obtained under both quasi-static and impact conditions. The energies absorbed during the impact and the critical energy for fracture (from the three-point bending test) were similar for the SHO and NES groups. Statistically significant differences were observed between the mean Fi max values of all analyzed sample groups. The obtained results suggest that the impact test was more sensitive than the classical quasi-static three-point bending one. Hence, Fi max could be used as a parameter to predict bone fracture toughness.
The aim of this study was to determine the occurrence and distribution of adropin in the small intestine in control and gastrectomized rats. The study was carried out on 12 Wistar rats. Six control rats (SHO) underwent a sham operation. Six rats were subjected to gastrectomy (Gx); i.e. resection of the antrum and the glandular part of the stomach. Six weeks after the surgery, the rats were sacrificed. The duodenum and middle part of the jejunum were collected for immunohistochemical and immunofluorescence procedures. An immunopositive reaction to ADR was detected in the duodenum and jejunum, in crypts, and in enterocytes located along the entire length of the villi. Furthermore, more intense ADR immunoreactivity was observed in the crypts and villi of the duodenum than in the jejunum. The presence of adropin was also detected in the submucosa and muscularis externa of the duodenum and jejunum, in the cells of Brunner’s gland of the duodenum, and in myenteric and submucosal plexus nerve. The ADR immunoreactivity in the crypts and villi in the duodenum and jejunum was lower in the Gx rats compared to the SHO rats. The ADR distribution in the duodenum and jejunum has also been confirmed in immunofluorescence studies. In conclusion, our data demonstrated ADR expression in all histological layers of the small intestine in the rats. Gx reduced ADR immunoreactivity in the crypts and enterocytes. This may suggest a potential impact of ADR on intestine function such as absorbability and immune reactions. However, further research is needed to explain the ADR role in gastrointestinal functions
Cereals are often contaminated with fumonisins, which are the toxic byproducts of mold. The aim of the study was to determine the effect of maternal exposure to fumonisins on the development and the liver function of the offspring at weaning. Two doses of fumonisins (60 and 90 mg/kg b.w.) were tested. The changes in the basal blood morphology, the biochemical parameters, the absolute and relative weights of the vital organs, and the changes in the cardiac and biceps brachii muscle histology were studied. The liver damage was assessed by evaluating the liver morphology and the common clinical liver panel. Maternal fumonisin intoxication caused a decrease in the body weight at birth and an increase in the heart, liver, kidney, lungs, ovaries, and testes weights. The cytokines and hormones, as well as the red blood cell counts and hemoglobin levels, were elevated in a dose-dependent manner following the exposure to fumonisins. Maternal exposure caused degenerative morphological and structural changes in the liver, as well as inflammation in the striated muscles, such as the heart and biceps brachii, and disproportionate development of the rat offspring in a dose-dependent manner. Moreover, FB exposure resulted in the disproportional development of the rat offspring in a dose-dependent manner, which was probably caused by the bodily hormonal dysregulation. Prenatal fumonisin exposure can be a pathological precursor for serious diseases, such as obesity and diabetes, later in life.
Our study aimed to evaluate the impact of nesfatin-1 administration on bone metabolism and properties in established osteopenia in ovariectomized female rats. In total, 21 female Wistar rats were assigned to two groups: sham-operated (SHAM, n = 7) and ovariectomized (OVA, n = 14). After 12 weeks of osteopenia induction in the OVA females, the animals were given i.p. physiological saline (OVA, n = 7) or 2 µg/kg body weight of nesfatin-1(NES, n = 7) for the next 8 weeks. The SHAM animals received physiological saline at the same time. Final body weight, total bone mineral density and content of the skeleton were estimated. Then, isolated femora and tibias were subjected to densitometric, tomographic, and mechanical tests. Bone metabolism markers, i.e., osteocalcin, bone specific alkaline phosphatase (bALP), and crosslinked N-terminal telopeptide of type I collagen (NTx) were determined in serum using an ELISA kit. Ovariectomy led to negative changes in bone metabolism associated with increased resorption, thus diminishing the densitometric, tomographic, and mechanical parameters. In turn, the administration of nesfatin-1 led to an increase in the value of the majority of the tested parameters of bones. The lowest bALP concentration and the highest NTx concentration were found in the OVA females. The bALP concentration was significantly higher after nesfatin-1 administration in comparison to the OVA rats. In conclusion, the results indicate that nesfatin-1 treatment limits bone loss, preserves bone architecture, and increases bone strength in condition of established osteopenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.