Bottom trawling leads to recurrent sediment resuspension events over fishing grounds. Recent studies have shown how bottom trawling can drive seascape reshaping at large spatial scales and enhance sediment transport in submarine canyons, which subsequently impacts deep-sea ecosystems. Present knowledge on the transfer and accumulation of sediment flows triggered by bottom trawling is based on localized and infrequent measurements whilst a more complete picture of the process is needed. The present work focuses on the modeling of sediment transport and accumulation resulting from trawling activities in La Fonera submarine canyon, northwestern Mediterranean Sea, thus contributing to an improved assessment of trawling impacts. Based on mooring data within a canyon gully, we use an inverse model to retrieve the unknown time series of resuspension due to trawling over the fishing grounds. This resuspension is later used as forcing for the direct problem: we simulate trawling-induced flows through the canyon and provide a 3D visualization of potential trawling impacts on sediment dynamics, including the identification of the propagation patterns of sediments resuspended by trawling. Flows coming from shallower fishing grounds are funneled through canyon flank gullies towards the canyon axis, with part of the resuspended sediment reaching the continental rise out of the canyon across the open continental slope. Trawling-induced sediment flows promote sediment accumulation beyond the canyon mouth. Given the wide geographical distribution of bottom trawling, our results have far-reaching implications that go much beyond La Fonera submarine canyon. Our study represents a starting point for the assessment of the sedimentary impact of bottom trawling in deep continental margins. Highlights ► A novel framework for estimating bottom-trawling sediment resuspension and transport is provided. ► The results yield a spatial view of submarine canyon sediment dynamics and sedimentation patterns. ► Model results are in good agreement with in situ data and sedimentation rates.
Salt intrusion in surface waters endangers freshwater availability, influences water quality, and affects estuarine ecosystem services with high economic and social values. Salt transport and the resulting salinity distributions result from the non‐linear interactions between salt and water dynamics. Estuaries are often considered under (quasi)‐steady assumption or by focusing on specific timescales. Our understanding of their temporal multiscale response to transient forcing is limited, which hinders the implementation of effective mitigation strategies. We apply wavelet analyses to quantify the variability of salt intrusion from hourly to seasonal timescales and unravel the temporal variability of its response across scales. We focus on an estuary that undergoes significant transient forcing, the Modaomen estuary in the Pearl River Delta, and apply the wavelet analyses to year‐long data generated by a coastal ocean numerical model. Our results show that this estuary responds to changes in tidal and riverine forcing throughout the year over interwoven timescales. Our results highlight the temporal variability of the salt intrusion response time both within a given regime and for the transition between regimes. They also suggest that tides control the response time more strongly than river discharge, even though river discharge determines the magnitude of the salt intrusion, and thus modulates the evolution of the salt intrusion response time. We propose a broadly applicable framework to calculate response times with simple data. These results can provide a first‐order guidance for design and implementation of estuarine management strategies and mitigation measures that ensure water access and facilitate sustainable development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.