Enantiomerically pure C -alkyl amides derived from cis and trans cycloalkane-1,2-dicarboxylic acids, respectively, have been synthesized and their behavior as organogelators has been investigated. These compounds include cis/trans diastereomeric cyclobutane and cyclohexane derivatives with the aim to explore the influence of the ring size as well as the relative configuration in their hierarchical self-assembly to form gels. High resolution H NMR spectroscopy studies allowed the determination of the dynamics of the gelation process in [D ]toluene and the sol-gel transition temperature. The morphology and size of the aggregates have been investigated and results have shown that, in the case of cyclobutane derivatives, the cis/trans stereochemistry is not relevant for the gelation behavior and the properties of the soft-materials obtained, but it is remarkable for cyclohexane diamides, which are better organogelators. The four compounds produce chiral aggregates despite that two of them are meso achiral molecules. We show herein that this fact is an example of stochastic symmetry breaking induced by sonication. The self-assembly of these molecules has been modelled providing information and support about the structure and the chirality of the aggregates.
The four stereoisomers of protected cyclobutane-1,2-diamine have been prepared in an enantio- and diastereocontrolled manner through stereodivergent synthetic routes starting from a half-ester as a common chiral precursor. Orthogonal protection allows the chemoselective manipulation of both amino groups as shown in this work.
Cationic bolaamphiphiles have been synthesized starting from meso cis- or chiral trans-1,2-difunctionalized cyclobutane derivatives. They include cis/trans pairs of diastereoisomers, of N- or C-centered bisamides. The goal of this work was to investigate the influence of stereochemistry and regiochemistry on their abilities as surfactants and self-assembly. Very large differences in surface coverage (2-fold), critical micellar concentration (cmc, up to 2 orders of magnitude), and aggregate structure (from lamellae to fibers) for the four molecules are remarkable due to regio- and stereochemistry differences. Computational calculations were carried out to rationalize the experimental findings and a new methodology has been developed to calculate the structure of these bolaamphiphiles at the surface. Although the four surfactants adopt a wicket-like conformation, for N-centered trans, the distance between polar heads is much larger than that for the other three molecules, as suggested by calculations. We have shown that the interplay between the regiochemistry and stereoisomerism, enhanced by rigidity of the cyclobutane ring, affects different physicochemical properties quite differently. That is, the cmc value is mainly governed by stereochemistry, with regiochemistry only modulating this value. On the other hand, regiochemistry definitely governs the morphology of the supramolecular aggregates (i.e., long fibers versus plates or spherical assemblies), with stereochemistry finely modulating their structural parameters. All these results must help in the rational design of new bolaamphiphiles with predictable properties and useful potential applications.
New enantiomerically pure C16-alkyl diamides derived from trihydroxy cyclohexane-1,2-dicarboxylic acid have been synthesized from (−)-shikimic acid. The hydroxyl groups in these compounds are free or, alternatively, they present full or partial protection. Their gelling abilities towards several solvents have been tested and rationalized by means of the combined use of Hansen solubility parameters, scanning electron microscopy (SEM), and circular dichroism (CD), as well as computational calculations. All the results allowed us to account for the capability of each type of organogelator to interact with different solvents and for the main mode of aggregation. Thus, compounds with fully protected hydroxyl groups are good organogelators for methanol and ethanol. In contrast, a related compound bearing three free hydroxyl groups is insoluble in water and polar solvents including alcohols but it is able to gelate some low-polarity solvents. This last behavior can be justified by strong hydrogen bonding between molecules of organogelator, which competes advantageously with polar solvent interactions. As an intermediate case, an organogelator with two free hydroxyl groups presents an ambivalent ability to gelate both apolar and polar solvents by means of two aggregation patterns. These involve hydrogen bonding interactions of the unprotected hydroxyl groups in apolar solvents and intermolecular interactions between amide groups in polar ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.