The purpose of this study was to describe the methodology necessary for simultaneous recording of intracranial EEG (ICEEG) and magnetoencephalography (MEG) and to assess the sensitivity of whole-head MEG versus depth electrode EEG in the detection and localization of epileptic spikes. Interictal MEG and depth electrode activities from the temporal mesial and occipital lobes were simultaneously recorded from four candidates for epilepsy surgery. Implanted depth electrodes identified neocortical and mesial structures of ictal onset. Interictal spikes detected by these same depth electrodes were compared with simultaneous MEG events. MEG detections of ICEEG spikes, ICEEG versus MEG spike amplitudes, number of ICEEG contacts involved in the spike, and anatomic locations of MEG equivalent current dipoles were analyzed. MEG detected and localized 95% of the neocortical spikes, but only 25% to 60% of spikes from mesial structures. Mesial temporal spikes resulted in lower MEG spike amplitudes, when compared with neocortical spikes. Equivalent current dipoles of MEG spikes localized to the ictal onset zones in all four patients. MEG can detect and localize interictal epileptiform spikes that are recorded from depth electrodes in both neocortical and mesial structures, despite the lesser amplitude of spikes of mesial origin.
The PK profile of gadobutrol in children aged younger than 2 years including newborns is similar to that in older children and adults. At the dose of 0.1 mmol/kg BW, gadobutrol had a favorable safety profile and was well tolerated with similar profile across the age range 0 to younger than 2 years and compared with older children and adults. Extrapolation of efficacy data from adults to the younger pediatric population, including term newborns, is justified. The recommended standard dose of gadobutrol (0.1 mmol/kg BW), as used in the population aged 2 years and older, is also appropriate in children aged younger than 2 years.
Using magnetoencephalography, we investigated the spatiotemporal patterns of brain magnetic activity responsible for maintaining verbal and spatial information in either an integrated or an unintegrated fashion. Considering time dimension, we noted a greater activation of a fronto-parietal network in early latencies during the maintenance of integrated information, and a different pattern during the maintenance of unintegrated material, showing a greater activation in a fronto-posterior network in late latencies. The greater activation found in certain areas which are traditionally reported as being engaged in spatial working memory (i.e. superior frontal gyri, dorsolateral prefrontal cortex, superior and inferior parietal lobes) when subjects maintained integrated information could be explained by a greater weight of the spatial dimension. It is as if words somehow acquired a spatial attribute, thus exerting a greater load in a neural network specialized in spatial working memory. Alternatively, and not mutually exclusive, we also propose that during the maintenance of integrated information the allocation of cognitive resources is less interfering than during the maintenance of unintegrated information, making it easier.
There is not yet a formal definition of magnetoencephalography (MEG) spike. This study provides a parametric description and definition of clear-cut MEG spikes recorded simultaneously by MEG and depth electrodes (iEEG). A total number of 367 simultaneous MEG/iEEG spikes were selected for analysis. Distribution of morphologic spike parameters and detailed quantitative analysis of the basic morphologic characteristics of MEG spikes is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.