BackgroundHeterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes.ResultsThe chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists) plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including most of the available red algal and chromist plastid genomes.ConclusionThe phylogenetic studies using concatenated plastid proteins still do not resolve the question of the monophyly of all chromist plastids. However, these results support both the monophyly of heterokont plastids and that of cryptophyte and haptophyte plastids, in agreement with nuclear phylogenies.
An inexpensive and rapid RNA extraction protocol for brown algae and seagrasses is presented, based on homogenization in a simple CTAB buffer and selective precipitation of RNA with lithium chloride. The protocol avoids the use of toxic chaotropic agents and phenol; high concentrations of dithiothreitol are used to inhibit RNase activity and to prevent oxidative cross-linking of nucleic acids by phenolics. A relatively high throughput of about 100 samples in 24 h can be achieved for, for example, Northern analysis. Yields of 50-200 mg g À1 fresh weight are comparable with those obtained for higher plants using commercially available kits. Tests of the extraction procedure demonstrate that high quality, intact RNA can be obtained from a variety of lyophilized brown algal tissues, even after prolonged storage at room temperature. Lyophilization is therefore suggested as an alternative to freezing tissue at À70 C to À80 C. The RNA obtained was used directly in several downstream applications to detect Fucus plastid-encoded transcripts by RNA-labelling, RT-PCR and Northern analysis.
Fish has been recently recognized as a suitable vertebrate model and represents a promising alternative to mammals for studying mechanisms of tissue mineralization and unravelling specific questions related to vertebrate bone formation. The recently developed Sparus aurata (gilthead seabream) osteoblast‐like cell line VSa16 was used to construct a cDNA subtractive library aimed at the identification of genes associated with fish tissue mineralization. Suppression subtractive hybridization, combined with mirror orientation selection, identified 194 cDNA clones representing 20 different genes up‐regulated during the mineralization of the VSa16 extracellular matrix. One of these genes accounted for 69% of the total number of clones obtained and was later identified as theS. aurata osteopontin‐like gene. The 2138‐bp full‐length S. aurata osteopontin‐like cDNA was shown to encode a 374 amino‐acid protein containing domains and motifs characteristic of osteopontins, such as an integrin receptor‐binding RGD motif, a negatively charged domain and numerous post‐translational modifications (e.g. phosphorylations and glycosylations). The common origin of mammalian osteopontin and fish osteopontin‐like proteins was indicated through an in silico analysis of available sequences showing similar gene and protein structures and was further demonstrated by their specific expression in mineralized tissues and cell cultures. Accordingly, and given its proven association with mineral formation and its characteristic protein domains, we propose that the fish osteopontin‐like protein may play a role in hard tissue mineralization, in a manner similar to osteopontin in higher vertebrates.
Monitoring the microbiological quality of water used for recreational activities is very important to human public health. Although the sanitary quality of recreational marine waters could be evaluated by standard methods, they are time-consuming and need confirmation. For these reasons, faster and more sensitive methods, such as the defined substrate-based technology, have been developed. In the present work, we have compared the standard method of membrane filtration using Tergitol-TTC agar for total coliforms and Escherichia coli, and Slanetz and Bartley agar for enterococci, and the IDEXX defined substrate technology for these faecal pollution indicators to determine the microbiological quality of natural recreational waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.