In this report we describe a new way of fabricating integrated microfluidic elements in glass. By employing a matrix of underpinning posts and a thin wall, surrounding etched flow channels, an efficient sealing of glass chips substrates to thin cover glass can be accomplished. The use of this arrangement enables the overlay sheath of glass to hermetically close the flow channel by fusion bonding while avoiding problems with void or crack formation that are due to dust particles, non-planarity and differences in thermal coefficient of expansion. As an example a structure with a thin cover glass, useful for studying phenomena in capillary electrophoresis utilizing large numerical aperture microscope lenses, was fabricated.
Contemporary microarrayers of contact or non-contact format used in protein microarray fabrication still suffer from a number of problems, e.g. generation of satellite spots, inhomogeneous spots, misplaced or even absent spots, and sample carryover. In this paper, a new concept of non-contact sample deposition that reduces such problems is introduced. To show the potential and robustness of this pressure-assisted deposition technique, different sample solutions known to cause severe problems or to be even impossible to print with conventional microarrayers were accurately printed. The samples included 200 mg mL(-1) human serum albumin, highly concentrated sticky cell adhesion proteins, pure high-salt cell-lysis buffer, pure DMSO, and a suspension of 5-microm polystyrene beads. Additionally, a water-immiscible liquid fluorocarbon, which was shown not to affect the functionality of the capture molecules, was employed as a lid to reduce evaporation during microarray printing. The fluorocarbon liquid lid was shown to circumvent hydrolysis of water-sensitive activated surfaces during long-term deposition procedures.
In this work, we studied the behavior of electrophoretic columns, having an inner diameter (ID) of 2-10 microm, filled with a cross-linked polyacrylamide gel matrix. The usefulness of these columns for DNA sequencing is discussed. Evaluation of column performance included tests of gel stability and migration time reproducibility. Confocal laser-induced fluorescence (LIF)-detection was employed utilizing a 488 nm argon ion laser for separations of C- and T-terminated DNA Sanger fragments. Reducing the inner diameter of the column from 50 microm to 10 microm resulted in an approximately eightfold increase in lifetime, under conditions in which the columns were subjected to a field strength of 1000 V/cm. The 10 microm ID columns were utilized for separation of Sanger fragments, and adequate detection sensitivity was obtained by stacking of the fragments from a deionized sample solution. A linear algorithm for retention data synchronization between individual electropherograms was employed to provide a route towards a reliable automated base calling protocol.
We demonstrate wavelength locking of a diode laser at 760 nm with feedback from an elastic transmission grating in the Littrow configuration. The laser was in a single longitudinal mode with a side-mode suppression of 20 dB. By stretching the grating the laser could be tuned over a few nm. The grating was fabricated in a silicone elastomer (polydimethylsiloxane) by a moulding technique, and coated by a thin layer of Ti and Au to achieve an increased diffraction efficiency needed for efficient locking.
In this paper, we present experimental results on how minute droplets are formed on fiber optic end faces. Results show that reproducible picoliter volumes can be generated when fibers are retracted from an aqueous phase contained under an inert fluorinated immiscible liquid, with a coefficient of variation (CV) of 0.7-2.3%. The droplet formation was analyzed as a function of the fiber diameter, retraction speed, and wettability. Experiments reveal a volume-determining critical equilibrium contact angle between 60 degrees and 75 degrees , defining the onset of fiber end-face dewetting. The dynamics of the droplet snap-off progression was characterized using high-speed imaging in order to explain the observed wettability-volume dependency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.