A practical C–H functionalization
method for the methylation
of heteroarenes is presented. Inspiration from Nature’s methylating
agent, S-adenosylmethionine (SAM), allowed for the
design and development of zinc bis(phenylsulfonylmethanesulfinate),
or PSMS. The action of PSMS on a heteroarene generates a (phenylsulfonyl)methylated
intermediate that can be easily separated from unreacted starting
material. This intermediate can then be desulfonylated to the methylated
product or elaborated to a deuteriomethylated product, and can divergently
access medicinally important motifs. This mild, operationally simple
protocol that can be conducted in open air at room temperature is
compatible with sensitive functional groups for the late-stage functionalization
of pharmacologically relevant substrates.
First generation EGFR TKIs (gefitinib, erlotinib) provide significant clinical benefit for NSCLC cancer patients with oncogenic EGFR mutations. Ultimately, these patients' disease progresses, often driven by a second-site mutation in the EGFR kinase domain (T790M). Another liability of the first generation drugs is severe adverse events driven by inhibition of WT EGFR. As such, our goal was to develop a highly potent irreversible inhibitor with the largest selectivity ratio between the drug-resistant double mutants (L858R/T790M, Del/T790M) and WT EGFR. A unique approach to develop covalent inhibitors, optimization of reversible binding affinity, served as a cornerstone of this effort. PF-06459988 was discovered as a novel, third generation irreversible inhibitor, which demonstrates (i) high potency and specificity to the T790M-containing double mutant EGFRs, (ii) minimal intrinsic chemical reactivity of the electrophilic warhead, (iii) greatly reduced proteome reactivity relative to earlier irreversible EGFR inhibitors, and (iv) minimal activity against WT EGFR.
An aryloxy tetramethylcyclobutane was identified as a novel template for androgen receptor (AR) antagonists via cell-based high-throughput screening. Follow-up to the initial "hit" established 5 as a viable lead. Further optimization to achieve full AR antagonism led to the discovery of 26 and 30, both of which demonstrated excellent in vivo tumor growth inhibition upon oral administration in a castration-resistant prostate cancer (CRPC) animal model.
N-{trans-3-[(5-Cyano-6-methylpyridin-2-yl)oxy]-2,2,4,4-tetramethylcyclobutyl}imidazo[1,2-a]pyrimidine-3-carboxamide (1) was recently identified as a full antagonist of the androgen receptor, demonstrating excellent in vivo tumor growth inhibition in castration-resistant prostate cancer (CRPC). However, the imidazo[1,2-a]pyrimidine moiety is rapidly metabolized by aldehyde oxidase (AO). The present paper describes a number of medicinal chemistry strategies taken to avoid the AO-mediated oxidation of this particular system. Guided by an AO protein structure-based model, our investigation revealed the most probable site of AO oxidation and the observation that altering the heterocycle or blocking the reactive site are two of the more effective strategies for reducing AO metabolism. These strategies may be useful for other drug discovery programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.