Previously published reports support the concept that, besides promoting homotypic intercellular adhesion, cadherins may transfer intracellular signals. However, the signaling pathways triggered by cadherin clustering and their biological significance are still poorly understood. We report herein that transfection of VE-cadherin (VEC) cDNA in VEC null endothelial cells induces actin rearrangement and increases the number of vinculin positive adhesion plaques. VEC expression augments the level of active Rac but decreases active Rho. Microinjection of a dominant negative Rac mutant altered stress fiber organization, whereas inhibition of Rho was ineffective. VEC expression increased protein and mRNA levels of the Rac-specific guanosine exchange factor Tiam-1 and induced its localization at intercellular junctions. In addition, in the presence of VEC, the amounts of Tiam, Rac, and the Rac effector PAK as well as the level of PAK phosphorylation were found increased in the membrane/cytoskeletal fraction. These observations are consistent with a role of VEC in localizing Rac and its signaling partners in the same membrane compartment, facilitating their reciprocal interaction. Through this mechanism VEC may influence the constitutive organization of the actin cytoskeleton.
The occurrence of schistosomiasis within African infants and preschool children has been much better documented in recent years, revealing an important burden of disease previously overlooked. Despite mounting evidence showing that treatment with praziquantel is safe, beneficial, and could be delivered within ongoing public health interventions, young children still do not have satisfactory access to this drug, and a significant treatment gap exists. Progress towards resolution of this unfortunate health inequity is highlighted, including the development of an appropriate paediatric praziquantel formulation, and present blocks are identified on securing this issue within the international health agenda.
The ability of epithelial cells to polarize requires cell-cell adhesion mediated by cadherin receptors. During cell-cell contact, the mechanism via which a flat, spread cell shape is changed into a tall, cuboidal epithelial morphology is not known. We found that cadherin-dependent adhesion modulates actin dynamics by triggering changes in actin organization both locally at junctions and within the rest of the cell. Upon induction of cell-cell contacts, two spatial actin populations are distinguishable: junctional actin and peripheral thin bundles. With time, the relative position of these two populations changes and becomes indistinguishable to form a cortical actin ring that is characteristic of mature, fully polarized epithelial cells. Junctional actin and thin actin bundles differ in their actin dynamics and mechanism of formation, and interestingly, have distinct roles during epithelial polarization. Whereas junctional actin stabilizes clustered cadherin receptors at cell-cell contacts, contraction of peripheral actin bundle is essential for an increase in the maximum height at the lateral domain during polarization (cuboidal morphology). Thus, both junctional actin and thin bundles are necessary, and cooperate with each other to generate a polarized epithelial morphology.
SummaryThe Ugandan national control programme for schistosomiasis has no clear policy for inclusion of preschool-children (≤5 years old) children. To re-balance this health inequality, we sought to identify best diagnosis of intestinal schistosomiasis, observe treatment safety and efficacy of praziquantel (PZQ), and extend the current WHO dose pole for chemotherapy. We examined and treated 363 preschool children from shoreline villages of Lakes Albert and Victoria, and found that 62·3% (CI95 57·1–67·3) of the children were confirmed to have intestinal schistosomiasis. One day after treatment, children were reported as having headaches (3·6%), vomiting (9·4%), diarrhoea (10·9%) and urticaria/rash (8·9%) with amelioration at 21-day follow-up, where the parasitological cure rate was found to be 100·0%. Height and weight data were collected from a further 3303 preschool children to establish and validate an extended PZQ dose pole that now includes two new height-intervals: 60–84 cm for one-half tablet and 84–99 cm for three-quarter tablet divisions; which would result in 97·6% of children receiving an acceptable dose (30–60 mg/kg). To conclude, preschool children in lakeshore communities of Uganda are at significant risk of intestinal schistosomiasis; we now strongly advocate for their immediate inclusion within the national control programme to eliminate this health inequity.
Cell-cell adhesive events affect cell growth and fate decisions and provide spatial clues for cell polarity within tissues. The complete molecular determinants required for adhesive junction formation and their function are not completely understood. LIM domain-containing proteins have been shown to be present at cellcell contact sites and are known to shuttle into the nucleus where they can affect cell fate and growth; however, their precise localization at cell-cell contacts, how they localize to these sites, and what their functions are at these sites is unknown. Here we show that, in primary keratinocytes, the LIM domain protein Ajuba is recruited to cadherin-dependent cell-cell adhesive complexes in a regulated manner. At cadherin adhesive complexes Ajuba interacts with ␣-catenin, and ␣-catenin is required for efficient recruitment of Ajuba to cell junctions. Ajuba also interacts directly with F-actin. Keratinocytes from Ajuba null mice exhibit abnormal cell-cell junction formation and/or stability and function. These data reveal Ajuba as a new component at cadherin-mediated cell-cell junctions and suggest that Ajuba may contribute to the bridging of the cadherin adhesive complexes to the actin cytoskeleton and as such contribute to the formation or strengthening of cadherin-mediated cell-cell adhesion.Cell-to-cell adhesion is important for tissue morphogenesis. During development, cell-cell contacts provide spatial clues for cell polarity and sorting, thereby ensuring proper cellular organization within tissues. Cell surface adhesion receptor proteins direct cell-cell adhesion. The cadherins, for example, are a superfamily of receptors that display calcium-dependent adhesion between the same types of proteins (i.e. homophilic interaction). E-cadherin is one of the best studied cell-cell adhesion proteins. In epithelia, E-cadherin has an important role in the generation and maintenance of the cell morphology, polarity, and function (1, 2).At adhesive contacts, E-cadherin receptors also provide cytosolic actin filaments with points of attachment to the membrane, from which tension and reorganization of the cortical cytoskeleton are initiated. E-cadherin-mediated adhesion triggers redistribution of membrane, cytoskeletal, and cytosolic signaling proteins to sites of cell-cell contacts, giving rise to multiprotein signaling complexes (1). Much investigation has been directed at understanding how these supramolecular protein complexes are formed, what proteins make up the functional complex, and what their contribution is to the strength of junction formation and remodeling of the cytoskeletal network.Proteins of the catenin family indirectly mediate the binding of actin filaments to cadherin receptors. -Catenin (or ␥-catenin/plakoglobin) associates directly with the cadherin tail, and then ␣-catenin bridges the -catenin-cadherin complex to actin filaments (1). ␣-Catenin is an essential component of the cadherin complex (1). It not only binds and bundles actin (3) but also provides docking sites for other cyt...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.