Basal area increment series of dominant trees oftrunk section allow the analysis of tree growth trajectories. In this study, we used direct measurements of basal area increment (BAI) to explain biological periodicity and forecast basal area growth of Douglas-fir growing in Western Mexico. To remove the age effect on tree growth we also ran the analysis in terms of cambial age. Results showed significant (P < 0.05) correlation between BAI and precipitation from January to July. We found periodicities in tree growth of 7, 21, 27 and 60 years.However, the 60-year period, was determinant to build an ARIMA model (0,1,1), to forecast BAI for the next decades. Tree growth projections suggest reduced BAI in mature dominant trees for the next decades. Decreased tree-growth is an unexpected result, as BAI in dominant trees remains constant up to the biological age. Our finding is concurrent with a general decrement in tree growth in other forests of the world due to water stress, which suggests that the future climatic variability may worsen health conditions of Douglas-fir forests in North Mexico. ResumenL as especies forestales como Pseudotsuga menziesii (Mirb.) Franco son sensibles al clima y muestran anillos de crecimiento claramente definidos. La selección cuidadosa de árboles dominantes con fuste circular permite el análisis de tendencias de crecimiento arbóreo. En este estudio se utilizaron mediciones directas del incremento del área basal (IAB) para explicar las periodicidades biológicas y elaborar predicciones del crecimiento en el abeto Douglas-fir que crece en el oeste de México. Para eliminar el efecto de la edad en el crecimiento de los árboles se hizo un análisis en términos de la edad del cámbium. Los resultados mostraron correlación significativa (P < 0.05) entre IAB y la precipitación de enero a julio. Además, se encontraron periodicidades de 7, 21, 27 y 60 años en el crecimiento de los árboles; el periodo de 60 años fue determinante para la construcción de un modelo ARIMA (0,1,1) para realizar predicciones del IAB en las próximas décadas. Las proyecciones del crecimiento proponen una reducción del IAB en árboles maduros dominantes en las próximas décadas. Dicha reducción es un resultado inesperado, debido a que el IAB en árboles dominantes permanece constante hasta una edad biológica de senescencia. Los resultados concuerdan con una tendencia general de reducción en el crecimiento en otros bosques del mundo debido a estrés hídrico, lo cual sugiere que la variabilidad climática futura puede empeorar la condición de salud del abeto Douglas-fir de los bosques del norte de México.Received: October 21, 2015 / Accepted: July 20, 2016. Palabras clave:Dendrocronología, anillos de crecimiento, productividad forestal, bosques templados, análisis de series de tiempo.
The respiratory metabolism of fruits is affected by multiple internal (product) and external (environmental) factors that often interact with each other. Among the external factors that have the greatest influence on respiration are temperature, air composition, moisture content, and illumination. This paper aims to elucidate the influence of environmental factors on the respiration rate of peach fruits based on transfer models obtained by dynamic regression modelling (ARIMAX). The fitted ARIMA models met the criteria of parsimony and white noise in residuals. The estimated coefficients of each model were statistically significant under the Durbin-Watson (DW), Akaike (AIC) and Schwarz (SBC) criteria. Transfer functions revealed 0.15% and 1.9% increase, and 0.001% decrease in the respiration rate of the peach fruit for each unit of change in temperature, relative humidity, and the illumination of the storage environment, respectively. The respiration rate response took place 1-8 minutes after the change in environmental variables had occurred. It was concluded that the dynamic regression modelling is reliable for predicting the physiological response of fruits the effect of external factors imposed continuously during postharvest handling. Website: http://revistas.unitru.edu.pe/index.php/scientiaagrop Facultad de Ciencias Agropecuarias Universidad Nacional de Trujillo Scientia Agropecuaria 11(1): 23 -29 (2020) SCIENTIA AGROPECUARIA How to cite this article: Pérez-López, A.; Ramírez-Guzmán, M.E.; Espinosa-Solares, T.; Aguirre-Mandujano, E.; Villaseñor-Perea, C.A. 2020. Postharvest respiration of fruits and environmental factors interaction: An approach by dynamic regression models. Scientia Agropecuaria 11(1): 23-29. ORCID A. Pérez-López https://orcid.org/0000-0002-9844-697X M. Ramírez-Guzmán https://orcid.org/0000-0002-8840-3706 T. Espinosa-Solares https://orcid.org/0000-0002-7581-0249 E. Aguirre-Mandujano https://orcid.org/0000-0002-4403-358X C. Villaseñor-Perea https://orcid.org/0000-0002-7404-022X
El efecto del ayuno ante-mortem en la calidad de carne de conejo ha sido poco estudiado. Se utilizaron 180 conejos machos de la raza Nueva Zelanda Blanca de 2,0 kg ± 0,04 de peso vivo (PV), los cuales fueron distribuidos en cuatro tratamientos (0, 4, 8 y 12 h de ayuno). Se utilizó un diseño completamente al azar, con el peso vivo al sacrificio como covariable. Se evaluaron las pérdidas de peso vivo (PV), el rendimiento de la canal, el pH inicial de la canal y final (24 h) de la carne. En el músculo Longissimus dorsi se evaluó el color, la capacidad de retención de agua (CRA), las pérdidas de cocción y la fuerza de corte. El PV disminuyó 0, 31, 54 y 76 g respecto al peso inicial, según el orden de los tratamientos. El rendimiento de la canal con 12 h de ayuno aumentó con respecto al testigo. El pH inicial fue mayor con 8 h respecto al resto de los tratamientos; sin embargo, el pH final fue menor con 12 h de ayuno con respecto al testigo. El color no se modificó por efecto de los tratamientos. La CRA disminuyó con 4 y 8 h de ayuno y la fuerza de corte se redujo con 8 h de ayuno, ambas respecto al testigo. Cuando se incrementó el tiempo de ayuno se reduce el peso de la víscera digestiva y urinaria e incrementa el rendimiento de la canal.
Recurrent flooding occurs in most years along different parts of the Gulf of Mexico coastline and the central and southeastern parts of Mexico. These events cause significant economic losses in the agricultural, livestock, and infrastructure sectors, and frequently involve loss of human life. Climate change has contributed to flooding events and their more frequent occurrence, even in areas where such events were previously rare. Satellite images have become valuable information sources to identify, precisely locate, and monitor flooding events. The machine learning models use remote sensing images pixels as input feature. In this paper, we report a study involving 16 combinations of Sentinel-1 SAR images, Sentinel-2 optical images, and digital elevation model (DEM) data, which were analyzed to evaluate the performance of two widely used machine learning algorithms, gradient boosting (GB) and random forest (RF), for providing information about flooding events. With machine learning models GB and RF, the input dataset (Sentinel-1, Sentinel-2, and DEM) was used to establish rules and classify the set in the categories specified by previous tags. Monitoring of flooding was performed by tracking the evolution of water bodies during the dry season (before the event) through to the occurrence of floods during the rainy season (during the event). For detection of bodies of water in the dry season, the metrics indicate that the best algorithm is GB with combination 15 (F1m = 0.997, AUC = 0.999, K = 0.994). In the rainy season, the GB algorithm had better metrics with combination 16 (F1m = 0.995, AUC = 0.999, Kappa = 0.994), and detected an extent of flooded areas of 1113.36 ha with depths of <1 m. The high classification performance shown by machine learning algorithms, particularly the so-called assembly algorithms, means that they should be considered capable of improving satellite image classification for detection of flooding over traditional methods, in turn leading to better monitoring of flooding at local, regional, and continental scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.