The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006)(2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d À1 to 6.6 mm d
À1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d À1 to 4.3 mm d
À1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Trajectories of vegetative change in wetlands can be influenced strongly by shifts in water-table elevation driven by evapotranspiration and spatial-temporal variability in groundwater. The specific dynamics of such interactions are difficult to quantify because of spatial complexities associated with local climate, geomorphology, and underlying geology. Nonetheless, a better understanding of the effects of groundwater and landform pattern on plant communities in wetlands can help with future predictions of change. Over two successive growing seasons, we investigated water-balance dynamics in 15 wetlands in a forested Great Lakes coastal wetland complex consisting of relict beach ridges and intervening swales. Our goal was to explore how variation in hydrogeology and landform morphology affected plant community composition. Water-balance analyses from water-level fluctuation methods, along with interpretation of underlying stratigraphy and slope, were used to explain plantcommunity ordination results. Our findings showed that phreatophytic plant communities developed in locations where hydrogeology or greater slopes allowed for supplemental groundwater flow to the swales. Conversely, shallow water-table slopes maintained standing water in swales, leading to obligate wetland plant communities. This study provides a clearer representation of hydrogeologic and ecohydrologic interactions to help inform our understanding of the relationship between groundwater hydrology and plant communities in wetlands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.