Isometric force production and ATPase activity were determined simultaneously in single human skeletal muscle fibers (n = 97) from five healthy volunteers and nine patients with chronic heart failure (CHF) at 20 degrees C. The fibers were permeabilized by means of Triton X-100 (1% vol/vol). ATPase activity was determined by enzymatic coupling of ATP resynthesis to the oxidation of NADH. Calcium-activated actomyosin (AM) ATPase activity was obtained by subtracting the activity measured in relaxing (pCa = 9) solutions from that obtained in maximally activating (pCa = 4.4) solutions. Fiber type was determined on the basis of myosin heavy chain isoform composition by polyacrylamide SDS gel electrophoresis. AM ATPase activity per liter cell volume (+/-SE) in the control and patient group, respectively, amounted to 134 +/- 24 and 77 +/- 9 microM/s in type I fibers (n = 11 and 16), 248 +/- 17 and 188 +/- 13 microM/s in type IIA fibers (n = 14 and 32), 291 +/- 29 and 126 +/- 21 microM/s in type IIA/X fibers (n = 3 and 5), and 325 +/- 32 and 205 +/- 21 microM/s in type IIX fibers (n = 7 and 9). The maximal isometric force per cross-sectional area amounted to 64 +/- 7 and 43 +/- 5 kN/m(2) in type I fibers, 86 +/- 11 and 58 +/- 4 kN/m(2) in type IIA fibers, 85 +/- 6 and 42 +/- 9 kN/m(2) in type IIA/X fibers, and 90 +/- 5 and 59 +/- 5 kN/m(2) in type IIX fibers in the control and patient group, respectively. These results indicate that, in CHF patients, significant reductions occur in isometric force and AM ATPase activity but that tension cost for each fiber type remains the same. This suggests that, in skeletal muscle from CHF patients, a decline in density of contractile proteins takes place and/or a reduction in the rate of cross-bridge attachment of approximately 30%, which exacerbates skeletal muscle weakness due to muscle atrophy.
Myoglobin plays various roles in oxygen supply to muscle mitochondria. It is difficult, and in some cases impossible, to study the relationship between the myoglobin concentration and the oxidative capacity of individual muscle cells because myoglobin has to be fixed in situ whereas determination of oxidative capacity, for example, succinate dehydrogenase activity, requires unfixed cryostat sections. We have investigated whether a vapour-fixation technique allows the use of serial sections to study the relationship between myoglobin and succinate dehydrogenase activity. The technique is used to study a rat soleus muscle, two human skeletal muscle biopsies and biopsies of two patients with chronic heart failure, and in a control and hypertrophied rat heart. Staining intensities were quantified by microdensitometry. The absorbance values were calibrated using sections cut from gelatine blocks containing known amounts of myoglobin. The results show that it is possible to use serial sections for the determination of the myoglobin concentration and succinate dehydrogenase activity, and indicate that myoglobin can lead to a substantial reduction (18-60%) of the extracellular oxygen tension required to prevent an anoxic core in muscle cells.
Previous studies indicate that the low maximum rate of oxygen consumption (VO2max) of chronic heart failure (CHF) patients is not because of impaired pump function of the heart. We hypothesize that VO2 during maximum exercise is determined by the total oxidative capacity of skeletal muscle. VO2max of six controls and 14 CHF patients, New York Heart Association class I-III, was determined using an incremental bicycle ergometer test. Cryostat sections of a biopsy from the quadriceps femoris muscle were incubated for succinate dehydrogenase (SDH) using quantitative histochemistry. VO2max (range: 29 ml O2 kg muscle(-1) min(-1) in a class III patient to 118 ml O2 kg muscle(-1) min(-1) in a control subject) correlates with the mean SDH activity of skeletal muscle fibres (r=0.79 or r=0.81, including or excluding oxygen uptake at rest, respectively; P<0.001). The relationship between VO2max and SDH activity is similar to that determined previously using isolated single muscle fibres and myocardial trabeculae under hyperoxic conditions. From the product of SDH activity and the cross-sectional area of the fibre (i.e. spatially integrated SDH activity), it is possible to calculate the maximum oxygen uptake rate per unit muscle fibre length. This uptake rate is linearly related to the number of capillaries per fibre (r=0.76, P<0.001) in all subjects, suggesting that oxidative capacity of skeletal muscle fibres in CHF patients decreases in proportion to the oxygen supply capacity of the microcirculation.
The purpose of this study was to determine the myoglobin concentration in skeletal muscle fibers of chronic heart failure (CHF) patients and to calculate the effect of myoglobin on oxygen buffering and facilitated diffusion. Myoglobin concentration, succinate dehydrogenase (SDH) activity, and cross-sectional area of individual muscle fibers from the vastus lateralis of five control and nine CHF patients were determined using calibrated histochemistry. CHF patients compared with control subjects were similar with respect to myoglobin concentration: type I fibers 0.69 +/- 0.11 mM (mean +/- SD), type II fibers 0.52 +/- 0.07 mM in CHF vs. type I fibers 0.70 +/- 0.09 mM, type II fibers 0.49 +/- 0.07 mM in control, whereas SDH activity was significantly lower in CHF in both fiber types (P < 0.01). The myoglobin concentration in type I fibers was higher than in type II fibers (P < 0.01). Consequently, the oxygen buffering capacity, calculated from myoglobin concentration/SDH activity was increased in CHF: type I fibers 11.4 +/- 2.1 s, type II fibers 13.6 +/- 3.9 s in CHF vs. type I fibers 7.8 +/- 0.9 s, type II fibers 7.5 +/- 1.0 s in control, all P < 0.01). The calculated extracellular oxygen tension required to prevent core anoxia (Po2(crit)) in muscle fibers was similar when controls were compared with patients in type I fibers 10.3 +/- 0.9 Torr in CHF and 11.5 +/- 3.3 Torr in control, but was lower in type II fibers of patients 6.1 +/- 2.8 Torr in CHF and 14.7 +/- 6.2 Torr in control, P < 0.01. The lower Po2(crit) of type II fibers may facilitate oxygen extraction from capillaries. Reduced exercise tolerance in CHF is not due to myoglobin deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.