Research on recommender systems typically focuses on the accuracy of prediction algorithms. Because accuracy only partially constitutes the user experience of a recommender system, this paper proposes a framework that takes a user-centric approach to recommender system evaluation. The framework links objective system aspects to objective user behavior through a series of perceptual and evaluative constructs (called subjective system aspects and experience, respectively). Furthermore, it incorporates the influence of personal and situational characteristics on the user experience. This paper reviews how current literature maps to the framework and identifies several gaps in existing work. Consequently, the framework is validated with four field trials and two controlled experiments and analyzed using Structural Equation Modeling. The results of these studies show that subjective system aspects and experience variables are invaluable in explaining why and how the user experience of recommender systems comes about. In all studies we observe that perceptions of recommendation quality and/or variety are important mediators in predicting the effects of objective system aspects on the three components of user experience: process (e.g. perceived effort, difficulty), system (e.g. perceived system effectiveness) and outcome (e.g. choice satisfaction). Furthermore, we find that these subjective aspects have strong and sometimes interesting behavioral correlates (e.g. reduced browsing indicates higher system effectiveness). They also show several tradeoffs between system aspects and personal and situational characteristics (e.g. the amount of preference feedback users provide is a tradeoff between perceived system usefulness and privacy concerns). These results, as well as the validated framework itself, provide a platform for future research on the user-centric evaluation of recommender systems.
Resolution of debates in cognition usually comes from the introduction of constraints in the form of new data about either the process or representation. Decision research, in contrast, has relied predominantly on testing models by examining their fit to choices. The authors examine a recently proposed choice strategy, the priority heuristic, which provides a novel account of how people make risky choices. The authors identify a number of properties that the priority heuristic should have as a process model and illustrate how they may be tested. The results, along with prior research, suggest that although the priority heuristic captures some variability in the attention paid to outcomes, it fails to account for major characteristics of the data, particularly the frequent transitions between outcomes and their probabilities. The article concludes with a discussion of the properties that should be captured by process models of risky choice and the role of process data in theory development.
Decision research has experienced a shift from simple algebraic theories of choice to an appreciation of mental processes underlying choice. A variety of process-tracing methods has helped researchers test these process explanations. Here, we provide a survey of these methods, including specific examples for subject reports, movement-based measures, peripheral psychophysiology, and neural techniques. We show how these methods can inform phenomena as varied as attention, emotion, strategy use, and understanding neural correlates. Two important future developments are identified: broadening the number of explicit tests of proposed processes through formal modeling and determining standards and best practices for data collection.
Loss aversion and reference dependence are 2 keystones of behavioral theories of choice, but little is known about their underlying cognitive processes. We suggest an additional account for loss aversion that supplements the current account of the value encoding of attributes as gains or losses relative to a reference point, introducing a value construction account. Value construction suggests that loss aversion results from biased evaluations during information search and comparison processes. We develop hypotheses that identify the influence of both accounts and examine process-tracing data for evidence. Our data suggest that loss aversion is the result of the initial direct encoding of losses that leads to the subsequent process of directional comparisons distorting attribute valuations and the final choice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.