SummaryAchieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here, we identify a lipid kinase, phosphatidylinositol 4-kinase (PI4K), as the target of imidazopyrazines, a novel antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens, P. falciparum and P. vivax, and inhibit liver stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI4K, altering the intracellular distribution of phosphatidylinositol 4-phosphate. Collectively, our data define PI4K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.
The gametocyte pLDH assay is fast, easy to perform, cheap and reproducible and is suitable for screening novel transmission-blocking compounds, which does not require parasite transgenic lines.
A central challenge of antimalarial therapy is the emergence of resistance to the components of artemisinin-based combination therapies (ACTs) and the urgent need for new drugs acting through novel mechanism of action. Over the last decade, compounds identified in phenotypic high throughput screens (HTS) have provided the starting point for six candidate drugs currently in the Medicines for Malaria Venture (MMV) clinical development portfolio. However, the published screening data which provided much of the new chemical matter for malaria drug discovery projects have been extensively mined. Here we present a new screening and selection cascade for generation of hit compounds active against the blood stage of Plasmodium falciparum. In addition, we validate our approach by testing a library of 141,786 compounds not reported earlier as being tested against malaria. The Hit Generation Library 1 (HGL1) was designed to maximise the chemical diversity and novelty of compounds with physicochemical properties associated with potential for further development. A robust HTS cascade containing orthogonal efficacy and cytotoxicity assays, including a newly developed and validated nanoluciferase-based assay was used to profile the compounds. 75 compounds (Screening Active hit rate of 0.05%) were identified meeting our stringent selection criteria of potency in drug sensitive (NF54) and drug resistant (Dd2) parasite strains (IC50 ≤ 2 uM), rapid speed of action and cell viability in HepG2 cells (IC50 ≥ 10 uM). Following further profiling, 33 compounds were identified that meet the MMV Confirmed Active profile and are high quality starting points for new antimalarial drug discovery projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.