The introduction of avian malaria (Plasmodium relictum) to Hawaii has provided a model system for studying the influence of exotic disease on naive host populations. Little is known, however, about the origin or the genetic variation of Hawaii's malaria and traditional classification methods have confounded attempts to place the parasite within a global ecological and evolutionary context. Using fragments of the parasite mitochondrial gene cytochrome b and the nuclear gene dihydrofolate reductase-thymidylate synthase obtained from a global survey of greater than 13000 avian samples, we show that Hawaii's avian malaria, which can cause high mortality and is a major limiting factor for many species of native passerines, represents just one of the numerous lineages composing the morphological parasite species. The single parasite lineage detected in Hawaii exhibits a broad host distribution worldwide and is dominant on several other remote oceanic islands, including Bermuda and Moorea, French Polynesia. The rarity of this lineage in the continental New World and the restriction of closely related lineages to the Old World suggest limitations to the transmission of reproductively isolated parasite groups within the morphological species.
The host specificity of blood parasites recovered from a survey of 527 birds in Cameroon and Gabon was examined at several levels within an evolutionary framework. Unique mitochondrial lineages of Haemoproteus were recovered from an average of 1.3 host species (maximum = 3) and 1.2 host families (maximum = 3) while lineages of Plasmodium were recovered from an average of 2.5 species (maximum = 27) and 1.6 families (maximum = 9). Averaged within genera, lineages of both Plasmodium and Haemoproteus were constrained in their host distribution relative to random expectations. However, while several individual lineages within both genera exhibited significant host constraint, host breadth varied widely among related lineages, particularly within the genus Plasmodium. Several lineages of Plasmodium exhibited extreme generalist host-parasitism strategies while other lineages appeared to have been constrained to certain host families over recent evolutionary history. Sequence data from two nuclear genes recovered from a limited sample of Plasmodium parasites indicated that, at the resolution of this study, inferences regarding host breadth were unlikely to be grossly affected by the use of parasite mitochondrial lineages as a proxy for biological species. The use of divergent host-parasitism strategies among closely related parasite lineages suggests that host range is a relatively labile character. Since host specificity may also influence parasite virulence, these results argue for considering the impact of haematozoa on avian hosts on a lineage-specific basis.
Aim Amphibians are a model group for studies of the biogeographical origins of salt‐intolerant taxa on oceanic islands. We used the Gulf of Guinea islands to explore the biogeographical origins of island endemism of one species of frog, and used this to gain insights into potential colonization mechanisms. Location São Tomé and Príncipe, two of the four major islands in the Gulf of Guinea, West Africa, are truly oceanic and have an exceptionally high biodiversity. Methods Mitochondrial DNA is used to test the endemic status of a frog from São Tomé and compare it with congeneric taxa from tropical Africa. Existing data on surface currents, surface salinity, atmospheric circulation and bird migration in the Gulf of Guinea are summarized to address hypotheses concerning colonization mechanisms. Results The endemic status of Ptychadena newtoni (Bocage) is supported here by mitochondrial DNA sequences, and analysis of this and other molecular data indicates that an East African species close to Ptychadena mascareniensis (Duméril and Bibron) is its nearest relative. We refute the possibility that this population was anthropogenically introduced, in favour of a natural dispersal mechanism. Main conclusions With six endemic frogs and one caecilian, the Gulf of Guinea islands harbour a diverse amphibian fauna. Five of these species appear to have their closest relatives in East Africa. Insufficient evidence exists for transportation by storms, birds or rafts alone. However, we propose a synergy of rafting, favourable surface currents and a reduction in salinity of surface waters. Catastrophic events, or wet periods in climatic history, could allow freshwater paths to open far enough to enable continental flora and fauna to reach these and other isolated oceanic islands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.