MicroRNAs (miRNAs) are short, noncoding RNAs that post-transcriptionally regulate gene expression. While hundreds of mammalian miRNA genes have been identified, little is known about the pathways that regulate the production of active miRNA species. Here we show that a large fraction of miRNA genes are regulated posttranscriptionally. During early mouse development, many miRNA primary transcripts, including the Let-7 family, are present at high levels but are not processed by the enzyme Drosha. An analysis of gene expression in primary tumors indicates that the widespread downregulation of miRNAs observed in cancer is due to a failure at the Drosha processing step. These data uncover a novel regulatory step in miRNA function and provide a mechanism for miRNA down-regulation in cancer.Supplemental material is available at http://www.genesdev.org.
A hallmark of mammalian embryonic development is the widespread induction of microRNA (miRNA) expression. Surprisingly, the transcription of many of these small, noncoding RNAs is unchanged through development; rather, a post-transcriptional regulatory event prevents accumulation of the mature miRNA species. Here, we present a biochemical framework for the regulated production of the Let-7 family of miRNAs. Embryonic cells contain a Drosha Inhibitor that prevents processing of the Let-7 primary transcript. This inhibitor specifically binds to conserved nucleotides in the loop region of the Let-7 precursor, and competitor RNAs that mimic the binding site restore Let-7 processing. We have identified the Drosha Inhibitor as the embryonic stem cell specific protein Lin-28. Lin-28 has been previously implicated in developmental regulatory pathways in Caenorhabditis elegans, and it promotes reprogramming of human somatic cells into pluripotent stem cells. Our findings outline a microRNA post-transcriptional regulatory network and establish a novel role for the miRNA precursor loop in the regulated production of mature Let-7.
Background: microRNAs (miRNAs) are small, noncoding RNA molecules that are now thought to regulate the expression of many mRNAs. They have been implicated in the etiology of a variety of complex diseases, including Tourette's syndrome, Fragile × syndrome, and several types of cancer.
Raf kinase inhibitory protein (RKIP) negatively regulates the MAP kinase (MAPK), G protein-coupled receptor kinase-2, and NF-jB signalling cascades. RKIP has been implicated as a metastasis suppressor for prostate cancer, but the mechanism is not known. Here, we show that RKIP inhibits invasion by metastatic breast cancer cells and represses breast tumour cell intravasation and bone metastasis in an orthotopic murine model. The mechanism involves inhibition of MAPK, leading to decreased transcription of LIN28 by Myc. Suppression of LIN28 enables enhanced let-7 processing in breast cancer cells. Elevated let-7 expression inhibits HMGA2, a chromatin remodelling protein that activates pro-invasive and prometastatic genes, including Snail. LIN28 depletion and let-7 expression suppress bone metastasis, and LIN28 restores bone metastasis in mice bearing RKIP-expressing breast tumour cells. These results indicate that RKIP suppresses invasion and metastasis in part through a signalling cascade involving MAPK, Myc, LIN28, let-7, and downstream let-7 targets. RKIP regulation of two pluripotent stem cell genes, Myc and LIN28, highlights the importance of RKIP as a key metastasis suppressor and potential therapeutic agent.
MicroRNAs (miRNAs) are a recently discovered class of ∼22-nucleotide regulatory RNAs that posttranscriptionally regulate gene expression. We have recently demonstrated that muscle-specific miRNAs miR-1 and -133 play an important role in modulating muscle proliferation and differentiation. Here, we investigate the involvement of miRNAs in cardiac hypertrophy. We analyzed the global expression of miRNAs in agonist-induced hypertrophic cardiomyocytes as well as in pressure overload-induced hypertrophic hearts and found the miRNA expression profile altered in those hypertrophic conditions. We further show that inhibition of endogenous miR-21 or -18b augments hypertrophic growth. Conversely, introduction of functional miR-21 or -18b into cardiomyocytes represses myocyte hypertrophy. Together, our studies point to miRNAs as critical regulators of cardiac hypertrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.