We report the 3D structure determination of gold nanoparticles (AuNPs) by X-ray single particle imaging (SPI). Around 10 million diffraction patterns from gold nanoparticles were measured in less than 100 hours of beam time, more than 100 times the amount of data in any single prior SPI experiment, using the new capabilities of the European X-ray free electron laser which allow measurements of 1500 frames per second. A classification and structural sorting method was developed to disentangle the heterogeneity of the particles and to obtain a resolution of better than 3 nm. With these new experimental and analytical developments, we have entered a new era for the SPI method and the path towards close-to-atomic resolution imaging of biomolecules is apparent.
Accurately representing the properties and impact of tropical convection in climate models requires an understanding of the relationships between the state of a convective cloud ensemble and the environment it is embedded in. We investigate this relationship using 13 years of radar observations in the tropics. Specifically, we focus on convective cell number and size and quantify their relationship to atmospheric stability, midtropospheric vertical motion and humidity. We find several key convective states embedded in their own unique environments. The most area‐averaged rainfall occurs with a moderate number of moderate size convective cell in an environment of high humidity, strong vertical ascent, and moderate convective available potential energy (CAPE) and convective inhibition (CIN). The strongest rainfall intensities are found with few large cells. Those exist in a dry and subsiding environment with both high CAPE and CIN. Large numbers of convective cells are associated with small CAPE and CIN, weak ascent, and a moist midtroposphere.
Climate models show considerable rainfall biases in coastal tropical areas, where approximately 33% of the overall rainfall received is associated with coastal land‐sea interaction. Building on an algorithm to objectively identify rainfall that is associated with land‐sea interaction we investigate whether the relationship between rainfall in coastal regions and atmospheric humidity differs from that over the open ocean or over inland areas. We combine 3‐hourly satellite estimates of rainfall with humidity estimates from reanalyses and investigate if coastal rainfall reveals the well‐known relationship between area‐averaged precipitation and column‐integrated moisture. We find that rainfall that is associated with coastal land‐sea effects occurs under much drier midtropospheric conditions than that over the ocean and does not exhibit a pronounced critical value of humidity. In addition, the dependence of the amount of rainfall on midtropospheric moisture is significantly weaker when the rainfall is coastally influenced.
Coastally associated rainfall is a common feature especially in tropical and subtropical regions. However, it has been difficult to quantify the contribution of coastal rainfall features to the overall local rainfall. We develop a novel technique to objectively identify precipitation associated with land-sea interaction and apply it to satellite based rainfall estimates. The Maritime Continent, the Bight of Panama, Madagascar and the Mediterranean are found to be regions where land-sea interactions play a crucial role in the formation of precipitation. In these regions ≈ 40% to 60% of the total rainfall can be related to coastline effects. Due to its importance for the climate system, the Maritime Continent is a particular region of interest with high overall amounts of rainfall and large fractions resulting from land-sea interactions throughout the year. To demonstrate the utility of our identification method we investigate the influence of several modes of variability, such as the Madden-Julian-Oscillation and the El Niño Southern Oscillation, on coastal rainfall behavior. The results suggest that during large scale suppressed convective conditions coastal effects tend to modulate the rainfall over the Maritime Continent leading to enhanced rainfall over land regions compared to the surrounding oceans. We propose that the novel objective dataset of coastally influenced precipitation can be used in a variety of ways, such as to inform cumulus parametrization or as an additional tool for evaluating the simulation of coastal precipitation within weather and climate models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.