3D scans of indoor environments suffer from sensor occlusions, leaving 3D reconstructions with highly incomplete 3D geometry (left). We propose a novel data-driven approach based on fully-convolutional neural networks that transforms incomplete signed distance functions (SDFs) into complete meshes at unprecedented spatial extents (middle). In addition to scene completion, our approach infers semantic class labels even for previously missing geometry (right). Our approach outperforms existing approaches both in terms of completion and semantic labeling accuracy by a significant margin. AbstractWe introduce ScanComplete, a novel data-driven approach for taking an incomplete 3D scan of a scene as input and predicting a complete 3D model along with per-voxel semantic labels. The key contribution of our method is its ability to handle large scenes with varying spatial extent, managing the cubic growth in data size as scene size increases. To this end, we devise a fully-convolutional generative 3D CNN model whose filter kernels are invariant to the overall scene size. The model can be trained on scene subvolumes but deployed on arbitrarily large scenes at test time. In addition, we propose a coarse-to-fine inference strategy in order to produce high-resolution output while also leveraging large input context sizes. In an extensive series of experiments, we carefully evaluate different model design choices, considering both deterministic and probabilistic models for completion and semantic inference. Our results show that we outperform other methods not only in the size of the environments handled and processing efficiency, but also with regard to completion quality and semantic segmentation performance by a significant margin.
We present a new technique for reconstructing a single shape and its nonrigid motion from 3D scanning data. Our algorithm takes a set of time-varying unstructured sample points that capture partial views of a deforming object as input and reconstructs a single shape and a deformation field that fit the data. This representation yields dense correspondences for the whole sequence, as well as a completed 3D shape in every frame. In addition, the algorithm automatically removes spatial and temporal noise artifacts and outliers from the raw input data. Unlike previous methods, the algorithm does not require any shape template but computes a fitting shape automatically from the input data. Our reconstruction framework is based upon a novel topology-aware adaptive subspace deformation technique that allows handling long sequences with complex geometry efficiently. The algorithm accesses data in multiple sequential passes, so that long sequences can be streamed from hard disk, not being limited by main memory. We apply the technique to several benchmark datasets, significantly increasing the complexity of the data that can be handled efficiently in comparison to previous work.
In this paper, we address the problem of inverse procedural modeling: Given a piece of exemplar 3D geometry, we would like to find a set of rules that describe objects that are similar to the exemplar. We consider local similarity, i.e., each local neighborhood of the newly created object must match some local neighborhood of the exemplar. We show that we can find explicit shape modification rules that guarantee strict local similarity by looking at the structure of the partial symmetries of the object. By cutting the object into pieces along curves within symmetric areas, we can build shape operations that maintain local similarity by construction. We systematically collect such editing operations and analyze their dependency to build a shape grammar. We discuss how to extract general rewriting systems, context free hierarchical rules, and grid-based rules. All of this information is derived directly from the model, without user interaction. The extracted rules are then used to implement tools for semi-automatic shape modeling by example, which are demonstrated on a number of different example data sets. Overall, our paper provides a concise theoretical and practical framework for inverse procedural modeling of 3D objects.
This paper introduces a new shape matching algorithm for computing correspondences between 3D surfaces that have undergone (approximately) isometric deformations. The new approach makes two main contributions: First, the algorithm is, unlike previous work, robust to "topological noise" such as large holes or "false connections", which is both observed frequently in real-world scanner data. Second, our algorithm samples the space of feasible solutions such that uncertainty in matching can be detected explicitly. We employ a novel randomized feature matching algorithm in order to find robust subsets of geodesics to verify isometric consistency. The paper shows shape matching results for real world and synthetic data sets that could not be handled using previous deformable matching algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.