The oxidative deterioration of glycerol-bound polyunsaturated fatty acids (PUFAs) in culinary oils and fats during episodes of heating associated with normal usage (30-90 min at 180°C) has been monitored by high field 'H NMR spectroscopy. Thermal stressing of PUFA-rich culinary oils generated high levels of n-alkanals, truna-2alkenals, alka-2,rl-dienals and 4-hydroxy-trans-2-alkenals via decomposition of their conjugated hydroperoxydiene precursors, whereas only low concentrations of selected aldehydes were produced in oils with a low PUFA content, lard and dripping when subjected to the above heating episodes. Samples of repeatedly used, PUFA-rich culinary oils obtained from restaurants also contained high levels of each class of aldehyde. The dietary, physiological and toxicological ramifications of the results obtained are discussed.
Thermal stressing of polyunsaturated fatty acid (PUFA)- rich culinary oils according to routine frying or cooking practices generates high levels of cytotoxic aldehydic products (predominantly trans-2-alkenals, trans,trans-alka-2,4-dienals, cis,trans-alka-2, 4-dienals, and n-alkanals), species arising from the fragmentation of conjugated hydroperoxydiene precursors. In this investigation we demonstrate that typical trans-2-alkenal compounds known to be produced from the thermally induced autoxidation of PUFAs are readily absorbed from the gut into the systemic circulation in vivo, metabolized (primarily via the addition of glutathione across their electrophilic carbon-carbon double bonds), and excreted in the urine as C-3 mercapturate conjugates in rats. Since such aldehydic products are damaging to human health, the results obtained from our investigations indicate that the dietary ingestion of thermally, autoxidatively stressed PUFA-rich culinary oils promotes the induction, development, and progression of cardiovascular diseases.
A multicomponent evaluation of the oxidative consumption of salivary biomolecules by a commercially-available oral rinse preparation containing an admixture of the stable free radical species chlorine dioxide (ClO2.) with chlorite anion (ClO2-) has been investigated using high resolution 1H NMR spectroscopy. The results obtained demonstrated that ClO2. and/or ClO2- present in this preparation effected the oxidative decarboxylation of salivary pyruvate (to acetate and CO2). Experiments conducted on chemical model systems confirmed the oxidative decarboxylation of pyruvate by this oral rinse, and also demonstrated that urate, thiocyanate anion, and the amino acids cysteine and methionine (precursors to volatile sulphur compounds responsible for oral malodour), were oxidatively consumed. The biochemical, periodontal and therapeutic significance of the results are discussed.
25128 I n vlvo absorption and metabolism of a#-unsaturated aldehydes generated in polyunsaturate-rich culinary oils during episodes of thermal stressing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.