We prove an interior Schauder estimate for the Laplacian on metric products of two dimensional cones with a Euclidean factor, generalizing the work of Donaldson and reproving the Schauder estimate of Guo-Song. We characterize the space of homogeneous subquadratic harmonic functions on products of cones, and identify scales at which geodesic balls can be well approximated by balls centered at the apex of an appropriate model cone. We then locally approximate solutions by subquadratic harmonic functions at these scales to measure the Hölder continuity of second derivatives.
We show that any toric Kähler cone with smooth compact cross-section admits a family of Calabi-Yau cone metrics with conical singularities along its toric divisors. The family is parametrized by the Reeb cone and the angles are given explicitly in terms of the Reeb vector field. The result is optimal, in the sense that any toric Calabi-Yau cone metric with conical singularities along the toric divisor (and smooth elsewhere) belongs to this family. We also provide examples and interpret our results in terms of Sasaki-Einstein metrics.
In this note we use the Calabi ansatz, in the context of metrics with conical singularities along a divisor, to produce regular Calabi-Yau cones and Kähler-Einstein metrics of negative Ricci with a cuspidal point. As an application, we describe singularities and cuspidal ends of the completions of the complex hyperbolic metrics on the moduli spaces of ordered configurations of points in the projective line introduced by Thurston and Deligne-Mostow.
We construct ALE Calabi-Yau metrics with cone singularities along the exceptional set of resolutions of C n /Γ with non-positive discrepancies. In particular, this includes the case of the minimal resolution of two dimensional quotient singularities for any finite subgroup Γ ⊂ U (2) acting freely on the three-sphere, hence generalizing Kronheimer's construction of smooth ALE gravitational instantons. Finally, we show how our results extend to the more general asymptotically conical setting.for every smooth compactly supported test function φ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.