For the purpose of post-marketing drug safety surveillance, which has traditionally relied on the voluntary reporting of individual cases of adverse drug events (ADEs), other sources of information are now being explored, including electronic health records (EHRs), which give us access to enormous amounts of longitudinal observations of the treatment of patients and their drug use. Adverse drug events, which can be encoded in EHRs with certain diagnosis codes, are, however, heavily underreported. It is therefore important to develop capabilities to process, by means of computational methods, the more unstructured EHR data in the form of clinical notes, where clinicians may describe and reason around suspected ADEs. In this study, we report on the creation of an annotated corpus of Swedish health records for the purpose of learning to identify information pertaining to ADEs present in clinical notes. To this end, three key tasks are tackled: recognizing relevant named entities (disorders, symptoms, drugs), labeling attributes of the recognized entities (negation, speculation, temporality), and relationships between them (indication, adverse drug event). For each of the three tasks, leveraging models of distributional semantics - i.e., unsupervised methods that exploit co-occurrence information to model, typically in vector space, the meaning of words - and, in particular, combinations of such models, is shown to improve the predictive performance. The ability to make use of such unsupervised methods is critical when faced with large amounts of sparse and high-dimensional data, especially in domains where annotated resources are scarce.
BackgroundTerminologies that account for variation in language use by linking synonyms and abbreviations to their corresponding concept are important enablers of high-quality information extraction from medical texts. Due to the use of specialized sub-languages in the medical domain, manual construction of semantic resources that accurately reflect language use is both costly and challenging, often resulting in low coverage. Although models of distributional semantics applied to large corpora provide a potential means of supporting development of such resources, their ability to isolate synonymy from other semantic relations is limited. Their application in the clinical domain has also only recently begun to be explored. Combining distributional models and applying them to different types of corpora may lead to enhanced performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs.ResultsA combination of two distributional models – Random Indexing and Random Permutation – employed in conjunction with a single corpus outperforms using either of the models in isolation. Furthermore, combining semantic spaces induced from different types of corpora – a corpus of clinical text and a corpus of medical journal articles – further improves results, outperforming a combination of semantic spaces induced from a single source, as well as a single semantic space induced from the conjoint corpus. A combination strategy that simply sums the cosine similarity scores of candidate terms is generally the most profitable out of the ones explored. Finally, applying simple post-processing filtering rules yields substantial performance gains on the tasks of extracting abbreviation-expansion pairs, but not synonyms. The best results, measured as recall in a list of ten candidate terms, for the three tasks are: 0.39 for abbreviations to long forms, 0.33 for long forms to abbreviations, and 0.47 for synonyms.ConclusionsThis study demonstrates that ensembles of semantic spaces can yield improved performance on the tasks of automatically extracting synonyms and abbreviation-expansion pairs. This notion, which merits further exploration, allows different distributional models – with different model parameters – and different types of corpora to be combined, potentially allowing enhanced performance to be obtained on a wide range of natural language processing tasks.
In the medical domain, especially in clinical texts, non-standard abbreviations are prevalent, which impairs readability for patients. To ease the understanding of the physicians' notes, abbreviations need to be identified and expanded to their original forms. We present a distributional semantic approach to find candidates of the original form of the abbreviation, and combine this with Levenshtein distance to choose the correct candidate among the semantically related words. We apply the method to radiology reports and medical journal texts, and compare the results to general Swedish. The results show that the correct expansion of the abbreviation can be found in 40% of the cases, an improvement by 24 percentage points compared to the baseline (0.16), and an increase by 22 percentage points compared to using word space models alone (0.18).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.