The liver-expressed microRNA-122 (miR-122) is essential for hepatitis C virus (HCV) RNA accumulation in cultured liver cells, but its potential as a target for antiviral intervention has not been assessed. Here, we show that treatment of chronically infected chimpanzees with a locked nucleic acid (LNA)-modified oligonucleotide (SPC3649) complementary to miR-122 leads to long-lasting suppression of HCV viremia with no evidence for viral resistance or side effects in the treated animals. Furthermore, transcriptome and histological analyses of liver biopsies demonstrated derepression of target mRNAs with miR-122 seed sites, down-regulation of interferon-regulated genes (IRGs) and improvement of HCV-induced liver pathology. The prolonged virological response to SPC3649 treatment without HCV rebound holds promise of a new antiviral therapy with a high barrier to resistance.
Heat shock proteins are evolutionarily highly conserved polypeptides that are produced under a variety of stress conditions to preserve cellular functions. A major antigen of tubercle bacilli of 65 kilodaltons is a heat shock protein that has significant sequence similarity and cross-reactivity with antigens of various other microbes. Monoclonal antibodies against this common bacterial heat shock protein were used to identify a molecule of similar size in murine macrophages. Macrophages subjected to various stress stimuli including interferon-gamma activation and viral infection were recognized by class I-restricted CD8 T cells raised against the bacterial heat shock protein. These data suggest that heat shock proteins are processed in stressed host cells and that epitopes shared by heat shock proteins of bacterial and host origin are presented in the context of class I molecules.
The human T-cell recognition of the low-molecular-mass culture filtrate antigen TB10.4 was evaluated in detail. The molecule was strongly recognized by T cells isolated from tuberculosis (TB) patients and from BCG-vaccinated donors. The epitopes on TB10.4 were mapped with overlapping peptides and found to be distributed throughout the molecule. The broadest response was found in TB patients, whereas the response in BCG-vaccinated donors was focused mainly toward a dominant epitope located in the N terminus (amino acids 1 to 18). The gene encoding TB10.4 was found to belong to a subfamily within the esat-6 family that consists of the three highly homologous proteins TB10.4, TB10.3, and TB12.9 (Rv0288, Rv3019c, and Rv3017c, respectively). Southern blot analysis combined with database searches revealed that the three members of the TB10.4 family were present only in strains of the Mycobacterium tuberculosis complex, including BCG, and M. kansasii, whereas other atypical mycobacteria had either one (M. avium, M. intracellulare, and M. marinum) or none (M. scrofulaceum, M. fortuitum, and M. szulgai) of the genes. The fine specificity of the T-cell response to the three closely related esat-6 family members was markedly different, with only a few epitopes shared between the molecules. Minimal differences in the amino acid sequence translated into large differences in recognition by T cells and secretion of gamma interferon. In general, the peptides from TB10.4 stimulated the largest responses, but epitopes unique to both TB10.3 and TB12.9 were found. The relevance of the findings for TB vaccine development and as a potential mechanism for immune evasion is discussed.
A new immunodiagnostic test based on the Mycobacterium tuberculosis-specific antigens CFP-10/ESAT-6(QFT-RD1) has been launched as an aid in the diagnosis of latent tuberculosis (TB) infection (LTBI). The aim of this study was to evaluate this test for the diagnosis of active TB. Eighty-two patients with suspicion of TB and 39 healthy BCG-vaccinated persons were enrolled. Forty-eight had active TB, 25 did not, and 9 were excluded. Sensitivity and specificity of the test for active TB were evaluated in a prospective blinded manner in patients suspected of TB. The sensitivity of the QFT-RD1 was 85% (40/48; confidence interval [CI], 75 to 96), and it was higher than the sensitivity of microscopy, 42% (20/48; CI, 27 to 56; P ؍ 0.001), and culture, 59% (27/46; CI, 44 to 73; P ؍ 0.009). Of patients with extrapulmonary TB, 92% (12/13) were QFT-RD1 positive, whereas only 31% (4/13) were positive by microscopy and 42% (5/12) by culture (P < 0.05), and 87% (13/15) of those who were negative by both microscopy and culture were QFT-RD1 positive. By combining microscopy and culture with the QFT-RD1 test, sensitivity increased to 96% (CI, 90 to 102). Ten of 25 (40%) non-TB patients were QFT-RD1 positive, resulting in a specificity of 60%. However, 80% (8/10) of these had risk-factors for TB, indicating latent infection in this group. In healthy controls, only 3% (1/39) were QFT-RD1 positive. In conclusion, the QFT-RD1 test is sensitive for diagnosis of TB, especially in patients with negative microscopy and culture. The accuracy of the QFT-RD1 test will vary with the prevalence of LTBI. We suggest that the QFT-RD1 test could be a very useful supplementary tool for the diagnosis of TB.Tuberculosis (TB) remains an important and potentially fatal infection in humans, and it is estimated that one-third of the world population is infected with Mycobacterium tuberculosis (30). The most powerful tools in any TB control program are prompt diagnosis and successful treatment of patients with active contagious disease. Diagnosis of TB is often based on clinical suspicion and appropriate response to anti-TB therapy. While culture confirmation is optimal, this is frequently not possible. Detection of acid-fast bacilli or granulomatous lesions are not optimal means of diagnosing TB but are strongly indicative. The diagnosis of patients with microscopy-and culture-negative or extrapulmonary TB is complicated and is often delayed due to the need for invasive diagnostic procedures, and no definitive diagnostic test can exclude infection with M. tuberculosis. The tuberculin skin test (TST) has been used for almost a century to support the diagnosis of active and latent TB infection (LTBI) (1). The main drawback with the clinical use of the TST is the lack of specificity due to cross-reactivity with proteins present in other mycobacteria, such as the Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine strain and Mycobacterium avium (1, 18). Identification and characterization of the two M. tuberculosis-specific antigens ESAT-6 and CFP...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.